Climate Modeling and the Projection of Global Warming

Author(s):  
Atsunobu Ichikawa
2020 ◽  
pp. 1-45
Author(s):  
Peter Uhe ◽  
Dann Mitchell ◽  
Paul D. Bates ◽  
Myles R. Allen ◽  
Richard A. Betts ◽  
...  

AbstractPrecipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding ‘method-uncertainty’ is rarely explicitly calculated in climate impact studies and major reports, but can substantially change estimated precipitation changes. A comparison across five commonly-used modeling activities shows that for changes in mean precipitation, less than half the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities capture the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multi-method approach. Our analysis highlights the risk of over-reliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this ‘method-uncertainty’. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates compared to using single-method projections to make decisions.


2020 ◽  
Vol 140 (3-4) ◽  
pp. 1451-1466 ◽  
Author(s):  
Md Jamal Uddin Khan ◽  
A. K. M. Saiful Islam ◽  
Sujit Kumar Bala ◽  
G. M. Tarekul Islam

2019 ◽  
Vol 117 ◽  
pp. 103916 ◽  
Author(s):  
Corentin Iltis ◽  
Philippe Louâpre ◽  
Karolina Pecharová ◽  
Denis Thiéry ◽  
Sébastien Zito ◽  
...  

2014 ◽  
Vol 27 (19) ◽  
pp. 7450-7461 ◽  
Author(s):  
Ori Adam ◽  
Tapio Schneider ◽  
Nili Harnik

Abstract The Hadley circulation (HC) has widened in recent decades, and it widens as the climate warms in simulations. But the mechanisms responsible for the widening remain unclear, and the widening in simulations is generally smaller than observed. To identify mechanisms responsible for the HC widening and for model–observation discrepancies, this study analyzes how interannual variations of tropical-mean temperatures and meridional temperature gradients influence the HC width. Changes in mean temperatures are part of any global warming signal, whereas changes in temperature gradients are primarily associated with ENSO. Within this study, 6 reanalysis datasets, 22 Atmospheric Modeling Intercomparison Project (AMIP) simulations, and 11 historical simulations from phase 5 of the Climate Modeling Intercomparison Project (CMIP5) are analyzed, covering the years 1979–2012. It is found that the HC widens as mean temperatures increase or as temperature gradients weaken in most reanalyses and climate models. On average, climate models exhibit a smaller sensitivity of HC width to changes in mean temperatures and temperature gradients than do reanalyses. However, the sensitivities differ substantially among reanalyses, rendering the HC response to mean temperatures in climate models not statistically different from that in reanalyses. While global-mean temperatures did not increase substantially between 1997 and 2012, the HC continued to widen in most reanalyses. The analysis here suggests that the HC widening from 1979 to 1997 is primarily the result of global warming, whereas the widening of the HC from 1997 to 2012 is associated with increased midlatitude temperatures and hence reduced temperature gradients during this period.


2021 ◽  
Vol 30 (12) ◽  
pp. 10-15
Author(s):  
Kyung-Ja HA

Manabe Syukuro is well known as a father of climate modeling. He and his colleagues have achieved several important milestones in the research on global warming. In this article, two highly advanced subjects are described. In the early 1960s, he developed a radiative-convective model of the atmosphere and explored the role of greenhouse gases, such as water vapor, carbon dioxide, and ozone in maintaining and changing the thermal structure of the atmosphere. His study was the beginning of long-term research on global warming. In 1969, Manabe and Bryan published the first results from a coupled ocean-atmosphere general circulation model (OAGCM). However, this model used a highly idealized continent-ocean configuration. Results from the first coupled OAGCM with more realistic configurations were published in 1975, which eventually became a very powerful tool for the simulation of global warming.


Sign in / Sign up

Export Citation Format

Share Document