Integration Of Ca2+ In Plant Drought And Salt Stress Signal Transduction Pathways

Author(s):  
Huazhong Shi
2021 ◽  
Author(s):  
Qiming Chen ◽  
Huizhen Dong ◽  
Zhihua Xie ◽  
Kaijie Qi ◽  
Xiaosan Huang ◽  
...  

Abstract Background: Pear is one of the most abundant fruit crops and has been cultivated world-wide. However, the salt injury events caused by increased salinity limited the distribution and sustainable production of pear crops. Therefore, it is needed to take further efforts to understand the genetics and mechanisms of salt tolerance to improved salt resistance and productivity.Results: In this work, we analyzed the dynamic transcriptome of pear (Pyrus ussuriensis Maxim) under salt stress by using RNA-Seq and WGCNA. A total of 3540, 3831, 8374, 6267 and 5381 genes were identified that were differentially expressed after exposure to 200mM NaCl for 4, 6, 12, 24 and 48 hours, respectively, and 1163 genes were shared among the five comparisons. KEGG enrichment analysis of these DEGs (differentially expressed genes) revealed that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly enriched. Meanwhile, 622 DEGs identified from WGCNA were highly correlated with these pathways, and some of them were able to indicate the salt tolerance of pear varieties. In addition, we provide a network to demonstrate the time-sequence of these co-expressed MAPK and hormone related genes.Conclusion: A comprehensive analysis about salt-responsive pear transcriptome were performed by using RNA-Seq and WGCNA. We demonstrated that “MAPK signaling” and “Plant hormone signal transduction” pathways were highly recruited during salt stress, and provided new insights into the metabolism of plant hormones related signaling at transcriptome level underlying salt resistance in pear. The dynamic transcriptome data obtained from this study and these salt-sensitive DEGs may provide potential genes as suitable targets for further biotechnological manipulation to improve pear salt tolerance.


2004 ◽  
Vol 135 (3) ◽  
pp. 1685-1696 ◽  
Author(s):  
Orna Avsian-Kretchmer ◽  
Yardena Gueta-Dahan ◽  
Simcha Lev-Yadun ◽  
Rachel Gollop ◽  
Gozal Ben-Hayyim

Author(s):  
Swapan K. Tripathy ◽  
Gyanisha Nayak ◽  
Jagruti Naik ◽  
Monalisa Patnaik ◽  
Asit P. Dash ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


Sign in / Sign up

Export Citation Format

Share Document