Anatomy of a Continuous/Discrete System Execution Model for Timed Execution of Heterogeneous Systems

Author(s):  
L. Gheorghe ◽  
F. Bouchhima ◽  
G. Nicolescu ◽  
M. Abid
2015 ◽  
Vol 25 (02) ◽  
pp. 1550004 ◽  
Author(s):  
Roberto Ribeiro ◽  
João Barbosa ◽  
Luís Paulo Santos

Exploiting the computing power of the diversity of resources available on heterogeneous systems is mandatory but a very challenging task. The diversity of architectures, execution models and programming tools, together with disjoint address spaces and different computing capabilities, raise a number of challenges that severely impact on application performance and programming productivity. This problem is further compounded in the presence of data parallel irregular applications. This paper presents a framework that addresses development and execution of data parallel irregular applications in heterogeneous systems. A unified task-based programming and execution model is proposed, together with inter and intra-device scheduling, which, coupled with a data management system, aim to achieve performance scalability across multiple devices, while maintaining high programming productivity. Intra-device scheduling on wide SIMD/SIMT architectures resorts to consumer-producer kernels, which, by allowing dynamic generation and rescheduling of new work units, enable balancing irregular workloads and increase resource utilization. Results show that regular and irregular applications scale well with the number of devices, while requiring minimal programming effort. Consumer-producer kernels are able to sustain significant performance gains as long as the workload per basic work unit is enough to compensate overheads associated with intra-device scheduling. This not being the case, consumer kernels can still be used for the irregular application. Comparisons with an alternative framework, StarPU, which targets regular workloads, consistently demonstrate significant speedups. This is, to the best of our knowledge, the first published integrated approach that successfully handles irregular workloads over heterogeneous systems.


1998 ◽  
Vol 37 (04/05) ◽  
pp. 518-526 ◽  
Author(s):  
D. Sauquet ◽  
M.-C. Jaulent ◽  
E. Zapletal ◽  
M. Lavril ◽  
P. Degoulet

AbstractRapid development of community health information networks raises the issue of semantic interoperability between distributed and heterogeneous systems. Indeed, operational health information systems originate from heterogeneous teams of independent developers and have to cooperate in order to exchange data and services. A good cooperation is based on a good understanding of the messages exchanged between the systems. The main issue of semantic interoperability is to ensure that the exchange is not only possible but also meaningful. The main objective of this paper is to analyze semantic interoperability from a software engineering point of view. It describes the principles for the design of a semantic mediator (SM) in the framework of a distributed object manager (DOM). The mediator is itself a component that should allow the exchange of messages independently of languages and platforms. The functional architecture of such a SM is detailed. These principles have been partly applied in the context of the HEllOS object-oriented software engineering environment. The resulting service components are presented with their current state of achievement.


1970 ◽  
Author(s):  
N.V. Antonishin ◽  
S. S. Zabrodsky ◽  
L.E. Simchenko ◽  
V.V. Lushchikov

1982 ◽  
Author(s):  
A. Elkashlan ◽  
A.I.A. salama ◽  
M. El-Geneidy ◽  
O.A. Sebekhy
Keyword(s):  

2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


2014 ◽  
Vol 24 (10) ◽  
pp. 2432-2459
Author(s):  
Yan-Ning DU ◽  
Yin-Liang ZHAO ◽  
Bo HAN ◽  
Yuan-Cheng LI

Sign in / Sign up

Export Citation Format

Share Document