Low-Dimensional Tools for Closed-Loop Flow-Control in High Reynolds Number Turbulent Flows

Author(s):  
Joseph W. Hall ◽  
Charles E. Tinney ◽  
Julie M. Ausseur ◽  
Jeremy T. Pinier ◽  
Andre M. Hall ◽  
...  
2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


1996 ◽  
Vol 317 ◽  
pp. 155-178 ◽  
Author(s):  
S. I. Chernyshenko ◽  
Ian P. Castro

Stably stratified steady flow past a bluff body in a channel is considered for cases in which the stratification is not sufficiently strong to give solutions containing wave motions. The physical mechanisms by which stratification influences the flow are revealed. In particular, the drag reduction under weak stratification, observed in experiments, is explained. This is achieved by constructing an asymptotic laminar solution for high Reynolds number (Re) and large channel width, which explicitly gives the mechanisms, and using comparisons with numerical results for medium Re and experiments for turbulent flows to argue that these mechanisms are expected to be common in all cases. The results demonstrate the possibility, subject to certain restrictions, of using steady high-Re theory as a tool for studying qualitative features of real flows.


2010 ◽  
Vol 49 (2) ◽  
pp. 497-511 ◽  
Author(s):  
J.-H. Kim ◽  
M. Nishihara ◽  
I. V. Adamovich ◽  
M. Samimy ◽  
S. V. Gorbatov ◽  
...  

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Rozie Zangeneh

Abstract This study investigates a new algorithm for modeling viscous transonic flow at high Reynolds number cases suitable for unstructured grids. The challenge of modeling viscous transonic flow around airfoils becomes intense at high Reynolds number cases due to a variety of flow regimes encountered, such as boundary layer growth and the shockwave/turbulent boundary-layer interaction, accompanied by large separation bubble. Therefore, it is highly demanded to develop robust and efficient models that can capture the shock-induced problems of turbulent flows for aircraft design purposes. The new model is essentially a hybrid algorithm to address the conflict between turbulence modeling and shock-capturing requirements. A skew-symmetric form of a collocated finite volume scheme with minimum aliasing errors was implemented to model the turbulent region in the combination of a semidiscrete, central difference scheme to capture discontinuities with adequately low numerical dissipation for the minimal effect on turbulent flows. To evaluate the effectiveness of the model, it was tested in three conventional cases. The computational results are close to measured data for predicting the shock locations. This implies that the model is able to predict the scale of the separation bubble and the main characteristics of turbulent transonic flow adequately.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950028 ◽  
Author(s):  
N. M. Sangtani Lakhwani ◽  
F. C. G. A. Nicolleau ◽  
W. Brevis

Lattice Boltzmann Method (LBM) simulations for turbulent flows over fractal and non-fractal obstacles are presented. The wake hydrodynamics are compared and discussed in terms of flow relaxation, Strouhal numbers and wake length for different Reynolds numbers. Three obstacle topologies are studied, Solid (SS), Porous Regular (PR) and Porous Fractal (FR). In particular, we observe that the oscillation present in the case of the solid square can be annihilated or only pushed downstream depending on the topology of the porous obstacle. The LBM is implemented over a range of four Reynolds numbers from 12,352 to 49,410. The suitability of LBM for these high Reynolds number cases is studied. Its results are compared to available experimental data and published literature. Compelling agreements between all three tested obstacles show a significant validation of LBM as a tool to investigate high Reynolds number flows in complex geometries. This is particularly important as the LBM method is much less time consuming than a classical Navier–Stokes equation-based computing method and high Reynolds numbers need to be achieved with enough details (i.e., resolution) to predict for example canopy flows.


Author(s):  
Ryan Wallace ◽  
Patrick Shea ◽  
Mark Glauser ◽  
Vaithianathan Thirunavukkarasu ◽  
Henry Carlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document