Development of a New Algorithm for Modeling Viscous Transonic Flow on Unstructured Grids at High Reynolds Numbers

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Rozie Zangeneh

Abstract This study investigates a new algorithm for modeling viscous transonic flow at high Reynolds number cases suitable for unstructured grids. The challenge of modeling viscous transonic flow around airfoils becomes intense at high Reynolds number cases due to a variety of flow regimes encountered, such as boundary layer growth and the shockwave/turbulent boundary-layer interaction, accompanied by large separation bubble. Therefore, it is highly demanded to develop robust and efficient models that can capture the shock-induced problems of turbulent flows for aircraft design purposes. The new model is essentially a hybrid algorithm to address the conflict between turbulence modeling and shock-capturing requirements. A skew-symmetric form of a collocated finite volume scheme with minimum aliasing errors was implemented to model the turbulent region in the combination of a semidiscrete, central difference scheme to capture discontinuities with adequately low numerical dissipation for the minimal effect on turbulent flows. To evaluate the effectiveness of the model, it was tested in three conventional cases. The computational results are close to measured data for predicting the shock locations. This implies that the model is able to predict the scale of the separation bubble and the main characteristics of turbulent transonic flow adequately.

2017 ◽  
Vol 823 ◽  
pp. 617-657 ◽  
Author(s):  
Vito Pasquariello ◽  
Stefan Hickel ◽  
Nikolaus A. Adams

We analyse the low-frequency dynamics of a high Reynolds number impinging shock-wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow separation. The flow configuration for our grid-converged large-eddy simulations (LES) reproduces recent experiments for the interaction of a Mach 3 turbulent boundary layer with an impinging shock that nominally deflects the incoming flow by $19.6^{\circ }$. The Reynolds number based on the incoming boundary-layer thickness of $Re_{\unicode[STIX]{x1D6FF}_{0}}\approx 203\times 10^{3}$ is considerably higher than in previous LES studies. The very long integration time of $3805\unicode[STIX]{x1D6FF}_{0}/U_{0}$ allows for an accurate analysis of low-frequency unsteady effects. Experimental wall-pressure measurements are in good agreement with the LES data. Both datasets exhibit the distinct plateau within the separated-flow region of a strong SWBLI. The filtered three-dimensional flow field shows clear evidence of counter-rotating streamwise vortices originating in the proximity of the bubble apex. Contrary to previous numerical results on compression ramp configurations, these Görtler-like vortices are not fixed at a specific spanwise position, but rather undergo a slow motion coupled to the separation-bubble dynamics. Consistent with experimental data, power spectral densities (PSD) of wall-pressure probes exhibit a broadband and very energetic low-frequency component associated with the separation-shock unsteadiness. Sparsity-promoting dynamic mode decompositions (SPDMD) for both spanwise-averaged data and wall-plane snapshots yield a classical and well-known low-frequency breathing mode of the separation bubble, as well as a medium-frequency shedding mode responsible for reflected and reattachment shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further identifies streamwise streaks at low frequencies that cause large-scale flapping of the reattachment line. The PSD and SPDMD results of our impinging SWBLI support the theory that an intrinsic mechanism of the interaction zone is responsible for the low-frequency unsteadiness, in which Görtler-like vortices might be seen as a continuous (coherent) forcing for strong SWBLI.


2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Christina Dunker

Abstract The ongoing attempts to gain access to the realm of high Reynolds number turbulence have resulted in the dedicated development of major experimental facilities and novel diagnostic methodologies as well as in the probing of atmospheric surface flows. In contrast to this, the presented study discusses the feasibility of an in-flight laboratory for Reynolds number investigations up to $$\rm {Re}_{\theta }\,\le \,49,400$$ Re θ ≤ 49 , 400 . The underpinning velocity data were obtained in flight tests by two moveable differential pressure probes and a stereo Particle Image Velocity (sPIV) system. The region of interest was located far downstream of the aircraft’s nose within the fuselage boundary layer. The pressure probes scanned the full boundary layer while the sPIV system remained fixed at certain wall-normal locations. The velocity data acquired exhibits distinct characteristics within the defect layer that deviate from Coles’ classical description of the wake. Furthermore, the streamwise turbulence intensities show a pronounced ‘outer peak’ further away from the wall at $$y^{+}=2000-5000$$ y + = 2000 - 5000 . The measurements were conducted under authentic flight conditions with an increased level of free-stream turbulence. These boundary conditions enabled an analysis of turbulent flows that are of relevance for various aeronautical applications. The manuscript elaborates on the main findings of this experimental study by presenting the velocity profiles captured by the moveable pressure probe system and samples of sPIV data. The capabilities and limitations of a flying laboratory for the investigation of high Reynolds number turbulence are discussed in detail. Graphic Abstract


Author(s):  
Curt H. Liebert ◽  
Raymond E. Gaugler ◽  
Herbert J. Gladden

Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for a given one-vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surfaces were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.


Author(s):  
Yasaman Farsiani ◽  
Brian R. Elbing

This paper reports on the characterization of the custom-designed high-Reynolds number recirculating water tunnel located at Oklahoma State University. The characterization includes the verification of the test section design, pump calibration and the velocity distribution within the test section. This includes an assessment of the boundary layer growth within the test section. The tunnel was designed to achieve a downstream distance based Reynolds number of 10 million, provide optical access for flow visualization and minimize inlet flow non-uniformity. The test section is 1 m long with 15.2 cm (6-inch) square cross section and acrylic walls to allow direct line of sight at the tunnel walls. The verification of the test section design was accomplished by comparing the flow quality at different location downstream of the flow inlet. The pump was calibrated with the freestream velocity with three pump frequencies and velocity profiles were measured at defined locations for three pump speeds. Boundary layer thicknesses were measured from velocity profile results and compared with analytical calculations. These measurements were also compared against the facility design calculations.


Author(s):  
Joseph W. Hall ◽  
Charles E. Tinney ◽  
Julie M. Ausseur ◽  
Jeremy T. Pinier ◽  
Andre M. Hall ◽  
...  

2018 ◽  
Vol 856 ◽  
pp. 958-983 ◽  
Author(s):  
Jinyul Hwang ◽  
Hyung Jin Sung

Wall turbulence is a ubiquitous phenomenon in nature and engineering applications, yet predicting such turbulence is difficult due to its complexity. High-Reynolds-number turbulence arises in most practical flows, and is particularly complicated because of its wide range of scales. Although the attached-eddy hypothesis postulated by Townsend can be used to predict turbulence intensities and serves as a unified theory for the asymptotic behaviours of turbulence, the presence of coherent structures that contribute to the logarithmic behaviours has not been observed in instantaneous flow fields. Here, we demonstrate the logarithmic region of the turbulence intensity by identifying wall-attached structures of the velocity fluctuations ($u_{i}$) through the direct numerical simulation of a moderate-Reynolds-number boundary layer ($Re_{\unicode[STIX]{x1D70F}}\approx 1000$). The wall-attached structures are self-similar with respect to their heights ($l_{y}$), and in particular the population density of the streamwise component ($u$) scales inversely with $l_{y}$, reminiscent of the hierarchy of attached eddies. The turbulence intensities contained within the wall-parallel components ($u$ and $w$) exhibit the logarithmic behaviour. The tall attached structures ($l_{y}^{+}>100$) of $u$ are composed of multiple uniform momentum zones (UMZs) with long streamwise extents, whereas those of the cross-stream components ($v$ and $w$) are relatively short with a comparable width, suggesting the presence of tall vortical structures associated with multiple UMZs. The magnitude of the near-wall peak observed in the streamwise turbulent intensity increases with increasing $l_{y}$, reflecting the nested hierarchies of the attached $u$ structures. These findings suggest that the identified structures are prime candidates for Townsend’s attached-eddy hypothesis and that they can serve as cornerstones for understanding the multiscale phenomena of high-Reynolds-number boundary layers.


Sign in / Sign up

Export Citation Format

Share Document