Chemotherapy of microsporidiosis: Benzimidazoles, fumagillin and polyamine analogues

Author(s):  
C. J. Bacchi ◽  
L. M. Weiss
Keyword(s):  
2003 ◽  
Vol 46 (21) ◽  
pp. 4586-4600 ◽  
Author(s):  
Benjamin Frydman ◽  
Andrei V. Blokhin ◽  
Sara Brummel ◽  
George Wilding ◽  
Yulia Maxuitenko ◽  
...  

1993 ◽  
Vol 291 (1) ◽  
pp. 131-137 ◽  
Author(s):  
L Albanese ◽  
R J Bergeron ◽  
A E Pegg

N1N12-Bis(ethyl)spermine (BESM) and related compounds are powerful inhibitors of cell growth that may have potential as anti-neoplastic agents [Bergeron, Neims, McManis, Hawthorne, Vinson, Bortell and Ingeno (1988) J. Med. Chem. 31, 1183-1190]. The mechanism by which these compounds bring about their effects was investigated by using variant cell lines in which processes thought to be altered by these agents are perturbed. Comparisons between the response of these cells and of their parental equivalents to BESM, N1N11-bis(ethyl)norspermine, N1N14-bis(ethyl)homospermine and N1N8-bis(ethyl)spermidine were then made. It was found that D-R cells, an L1210-derived line that over-expresses ornithine decarboxylase, were not resistant to these compounds. This indicates that the decrease in ornithine decarboxylase is not critical for the action of the compounds on cell growth. Furthermore, although polyamine levels were decreased in the D-R cells, the content was not totally depleted, indicating that such depletion is also not essential for the anti-proliferative effect. Two cell lines lacking mitochondrial DNA (human 143B206 cells and chicken DU3 cells) did not differ in sensitivity to BESM from their parental 143BTK- and DU24 cells. Furthermore, the inhibition of respiration in L1210 cells in response to BESM developed more slowly than the inhibition of growth. Thus it appears that the inhibitions of mitochondrial DNA synthesis and of mitochondrial respiration are also not primary factors in the anti-proliferative effects of these polyamine analogues. The inhibition of growth did, however, correlate with the intracellular accumulation of the analogues. It appears that the bis(ethyl)polyamine derivatives act by binding to intracellular target molecules and preventing macromolecular synthesis. The decline in normal polyamines may facilitate such binding, but is not essential for growth arrest.


2012 ◽  
Vol 108 ◽  
pp. 1-7 ◽  
Author(s):  
T.M. Silva ◽  
S. Oredsson ◽  
L. Persson ◽  
P. Woster ◽  
M.P.M. Marques

2007 ◽  
Vol 35 (2) ◽  
pp. 318-321 ◽  
Author(s):  
J.L.A. Mitchell ◽  
T.K. Thane ◽  
J.M. Sequeira ◽  
R. Thokala

One strategy for inhibiting tumour cell growth is the use of polyamine mimetics to depress endogenous polyamine levels and, ideally, obstruct critical polyamine-requiring reactions. Such polyamine analogues make very unusual drugs, in that extremely high intracellular concentrations are required for growth inhibition or cytotoxicity. Cells exposed to even sub-micromolar concentrations of such analogues can achieve effective intracellular levels because these compounds are incorporated by the very aggressive polyamine uptake system. Once incorporated to these levels, many of these analogues induce the synthesis of a regulatory protein, antizyme, which inhibits both polyamine synthesis and the transporter they used to enter the cell. Thus this feedback system allows steady-state maintenance of effective cellular doses of such analogues. Accordingly, effective cellular levels of polyamine analogues are generally inversely related to their capacity to induce antizyme. Antizyme activity is down-regulated by interaction with several binding partners, most notably antizyme inhibitor, and at least a few tumour tissues exhibit deficiencies in antizyme expression. Our studies explore the role of antizyme induction by several polyamine analogues in their physiological response and the possibility that cell-to-cell differences in antizyme expression may contribute to variable sensitivities to these agents.


2013 ◽  
Vol 453 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Mervi T. Hyvönen ◽  
Taina Koponen ◽  
Janne Weisell ◽  
Marko Pietilä ◽  
Alex R. Khomutov ◽  
...  

We have shown previously that the polyamine spermidine is indispensable for differentiation of 3T3-L1 preadipocytes. In the present study, we examined the mechanism of spermidine function by using the polyamine biosynthesis inhibitor α-difluoromethylornithine in combination with the metabolically stable polyamine analogues γ-methylspermidine or (R,R)-α,ω-bismethylspermine. At the early phase of differentiation, spermidine-depleted 3T3-L1 cells showed decreased translation of the transcription factor C/EBPβ (CCAAT/enhancer-binding protein β), decreased PP2A (protein phosphatase 2A) activity and increased cytoplasmic localization of the RNA-binding protein HuR (human antigen R). The amount of HuR bound to C/EBPβ mRNA was reduced, whereas the amount of bound CUGBP2, an inhibitor of C/EBPβ translation, was increased. ANP32 (acidic nuclear phosphoprotein 32) proteins, which are known PP2A inhibitors and HuR ligands, bound more PP2A and HuR in spermidine-depleted than in control cells, whereas immunodepletion of ANP32 proteins from the lysate of spermidine-depleted cells restored PP2A activity. Taken together, our data shows that spermidine promotes C/EBPβ translation in differentiating 3T3-L1 cells, and that this process is controlled by the interaction of ANP32 with HuR and PP2A.


2005 ◽  
Vol 45 (supplement) ◽  
pp. S136
Author(s):  
M. Okanojo ◽  
K. Shiraki ◽  
M. Takagi

2006 ◽  
Vol 1076 (1) ◽  
pp. 209-215 ◽  
Author(s):  
Jun Li ◽  
Martin C. Henman ◽  
Jeffrey Atkinson ◽  
Solomon Fixon-Owoo ◽  
Turgut Tatlisumak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document