Mechanical Properties of Brain Tissue: Characterisation and Constitutive Modelling

Author(s):  
J.A.W. van Dommelen ◽  
M. Hrapko ◽  
G.W.M. Peters
2016 ◽  
Vol 12 ◽  
pp. P462-P462
Author(s):  
Martina M. Hughes ◽  
Beatriz G. Perez-Nievas ◽  
Claire Troakes ◽  
Michael Perkinton ◽  
Diane P. Hanger ◽  
...  

Author(s):  
Aleksandar S. Mijailovic ◽  
Sualyneth Galarza ◽  
Shabnam Raayai-Ardakani ◽  
Nathan P. Birch ◽  
Jessica D. Schiffman ◽  
...  

2013 ◽  
Vol 2013 (0) ◽  
pp. 95-96
Author(s):  
Masaya FUJIMOTO ◽  
Itsuo SAKURAMOTO ◽  
Kazuhiko ICHIHARA ◽  
Jyunji OHGI ◽  
Masami IWAMOTO

Author(s):  
A. Rezaei ◽  
M. Salimi Jazi ◽  
G. Karami ◽  
M. Ziejewski

Traumatic brain injury (TBI) is one of the most important problems in biomechanical engineering, and there have been many experiments conducted in order to characterize the mechanical properties of brain tissue. However, obtaining fresh human brain tissue is difficult, if not impossible. Also, the sample preparation and testing protocols must be carried out with great delicacy because brain tissue is very soft and vulnerable to being deformed under a very small amount of load. Most importantly, according to several researchers, each sample must be tested only one time as the tissue may be damaged and its characteristics subsequently changed. This paper is intended to examine the amount of decay that can happen in material characteristics due to retesting. A stress relaxation test is conducted on the same samples of the swine brain tissue multiple times in small and large deformations. The mechanical properties of the substance are calculated before and after retesting, and the constants of the tissue, as mechanical characteristics, are determined and compared. Short- and long-term moduli, relaxation times and relaxation functions are calculated and compared to understand how much they decay after repeating the experiments. The results show that retesting does not significantly change the elastic part of the tissue characteristics, but the viscous behavior shows a relatively sizeable change. The ability to account for the material decay of the samples due to repetition of the experiments results in the need for fewer samples and less preparation time and effort.


Author(s):  
Fulufhelo Nemavhola

Regional mechanics of the heart is vital in the development of accurate computational models for the pursuit of relevant therapies. Challenges related to heart dysfunctioning are the most important sources of mortality in the world. For example, myocardial infarction (MI) is the foremost killer in sub-Saharan African countries. Mechanical characterisation plays an important role in achieving accurate material behaviour. Material behaviour and constitutive modelling are essential for accurate development of computational models. In most cases previously, the mechanical properties of the heart myocardium were assumed to be homogeneous. The main objective of this paper is to determine the mechanical material properties of healthy porcine myocardium in three regions, namely left ventricle (LV), mid-wall/interventricular septum (MDW) and right ventricle (RV). The biomechanical properties of the pig heart RV, LV and MDW were characterised using biaxial testing. The biaxial tests show the pig heart myocardium behaves non-linearly, heterogeneously and anisotropically. In this study, it was shown that RV, LV and MDW may exhibit slightly different mechanical properties. Data presented here may be helpful in regional tissue mechanics, especially for the understanding of various heart diseases and development of new therapies.


2007 ◽  
Vol 5 (20) ◽  
pp. 349-362 ◽  
Author(s):  
A. Luis Dorfmann ◽  
William A Woods ◽  
Barry A Trimmer

Experimental data on the passive mechanical properties of the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta , are reported. The stress–deformation response of the Manduca muscle is shown to be nonlinear pseudo-elastic, capable of large deformations and subject to stress softening during initial loading cycles. The muscle passive mechanical properties also depend on multiple time-dependent processes. In particular, we show new experimental data from cyclic loading tests of an unstimulated muscle with constant maximum stretch and different, constant engineering strain rates. Then, on the basis of these data a constitutive model is derived to reproduce the main characteristics of this behaviour. In formulating the constitutive model, we consider the muscle as a complex macromolecular structure with fibrous components at numerous size scales. The model uses a phenomenological approach to account for different mechanisms by which passive force changes during applied deformation and how the muscle properties recover after unloading.


Sign in / Sign up

Export Citation Format

Share Document