Conflict Expansion in an Information Rich Society: Feasibility of Corrective Actions

Author(s):  
Jaak Tepandi
Author(s):  
Ramesh Varma ◽  
Richard Brooks ◽  
Ronald Twist ◽  
James Arnold ◽  
Cleston Messick

Abstract In a prequalification effort to evaluate the assembly process for the industrial grade high pin count devices for use in a high reliability application, one device exhibited characteristics that, without corrective actions and/or extensive screening, may lead to intermittent system failures and unacceptable reliability. Five methodologies confirmed this conclusion: (1) low post-decapsulation wire pull results; (2) bond shape analysis showed process variation; (3) Failure Analysis (FA) using state of the art equipment determined the root causes and verified the low wire pull results; (4) temperature cycling parts while monitoring, showed intermittent failures, and (5) parts tested from other vendors using the same techniques passed all limits.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2210
Author(s):  
Luís Caseiro ◽  
André Mendes

Fault-tolerance is critical in power electronics, especially in Uninterruptible Power Supplies, given their role in protecting critical loads. Hence, it is crucial to develop fault-tolerant techniques to improve the resilience of these systems. This paper proposes a non-redundant fault-tolerant double conversion uninterruptible power supply based on 3-level converters. The proposed solution can correct open-circuit faults in all semiconductors (IGBTs and diodes) of all converters of the system (including the DC-DC converter), ensuring full-rated post-fault operation. This technique leverages the versatility of Finite-Control-Set Model Predictive Control to implement highly specific fault correction. This type of control enables a conditional exclusion of the switching states affected by each fault, allowing the converter to avoid these states when the fault compromises their output but still use them in all other conditions. Three main types of corrective actions are used: predictive controller adaptations, hardware reconfiguration, and DC bus voltage adjustment. However, highly differentiated corrective actions are taken depending on the fault type and location, maximizing post-fault performance in each case. Faults can be corrected simultaneously in all converters, as well as some combinations of multiple faults in the same converter. Experimental results are presented demonstrating the performance of the proposed solution.


2010 ◽  
Vol 67 (1-2) ◽  
pp. 3-5 ◽  
Author(s):  
R. I. Makarov ◽  
E. V. Suvorov ◽  
Yu. M. Obukhov

Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


2021 ◽  
Author(s):  
Mohamed Elyas ◽  
Sherif Aly ◽  
Uche Achinanya ◽  
Sergey Prosvirkin ◽  
Shayma AlSaffar ◽  
...  

Abstract Well integrity is one of the main challenges that are facing operators, finding the source of the well problem and isolating it before a catastrophic event occurs. This study demonstrates the power of integrating different reservoir monitoring and well integrity logs to evaluate well integrity, identify the underlying cause of the potential failure, and providing a potential corrective solution. Recently, some Injector/producer wells reported migration of injection fluids/gas into shallower sections, charging these formations and increasing the risk of compromised well integrity. Characterization of the well issues required integration of multi-detector pulsed-neutron, well integrity (multi finger caliper, multi-barrier corrosion, cement evaluation, and casing thickness measurements), high precision temperature logs and spectral noise logs. After data integration, detailed analysis was performed to specifically find the unique issues in each well and assess possible corrective actions. The integrated well integrity logs clearly showed different 9.625-inch and 13.375-inch casings leak points. The reservoir monitoring logs showed lateral and vertical gas and water movements across Wara, Tayarat, Rus, and Radhuma formations. Cement evaluation loges showed no primary cement behind the first barrier casing which was the root cause of the problem. Therefore, the proposed solution, was a cement squeeze. Post squeeze, re-logging occurred, validating zonal isolation and a return of a standard geothermal gradient across the Tayarat formation. Most importantly, the cement evaluation identified good bond from the squeeze point clear to surface, isolating all formations. All these wells were returned to service (injector/producer), daily annular pressure monitoring confirmed that no further pressure build up was seen. Kuwait Oil Company managed to avoid a catastrophic well integrity event on these wells and utilized the approach presented to take the proper corrective actions, and validate that the action taken resolved the initial well integrity issues. Consequently, the wells were returned to service, and the company avoided a costly high probability blowout.


Sign in / Sign up

Export Citation Format

Share Document