HARMONI: A Narrow Field Near-infrared Integral Field Spectrograph for the E-ELT

Author(s):  
Matthias Tecza ◽  
Niranjan Thatte ◽  
Fraser Clarke ◽  
David Freeman
1995 ◽  
Vol 149 ◽  
pp. 298-299
Author(s):  
P. Martin ◽  
P.C. Pinet ◽  
R. Bacon ◽  
A. Rousset

AbstractHigh spectral and spatial resolution telescopic observations of the western hemisphere of Mars, using the integral field spectrograph TIGER at 0.8-1.1 µm, are described.


2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


2020 ◽  
Vol 640 ◽  
pp. L12
Author(s):  
S. Y. Haffert ◽  
R. G. van Holstein ◽  
C. Ginski ◽  
J. Brinchmann ◽  
I. A. G. Snellen ◽  
...  

Context. Direct imaging provides a steady flow of newly discovered giant planets and brown dwarf companions. These multi-object systems can provide information about the formation of low-mass companions in wide orbits and/or help us to speculate about possible migration scenarios. Accurate classification of companions is crucial for testing formation pathways. Aims. In this work we further characterise the recently discovered candidate for a planetary-mass companion CS Cha b and determine if it is still accreting. Methods. MUSE is a four-laser-adaptive-optics-assisted medium-resolution integral-field spectrograph in the optical part of the spectrum. We observed the CS Cha system to obtain the first spectrum of CS Cha b. The companion is characterised by modelling both the spectrum from 6300 Å to 9300 Å and the photometry using archival data from the visible to the near-infrared (NIR). Results. We find evidence of accretion and outflow signatures in Hα and OI emission. The atmospheric models with the highest likelihood indicate an effective temperature of 3450 ± 50 K with a log g of 3.6 ± 0.5 dex. Based on evolutionary models, we find that the majority of the object is obscured. We determine the mass of the faint companion with several methods to be between 0.07 M⊙ and 0.71 M⊙ with an accretion rate of Ṁ = 4 × 10−11±0.4 M⊙ yr−1. Conclusions. Our results show that CS Cha B is most likely a mid-M-type star that is obscured by a highly inclined disc, which has led to its previous classification using broadband NIR photometry as a planetary-mass companion. This shows that it is important and necessary to observe over a broad spectral range to constrain the nature of faint companions.


2003 ◽  
Author(s):  
Peter J. McGregor ◽  
John Hart ◽  
Peter G. Conroy ◽  
Murray L. Pfitzner ◽  
Gabe J. Bloxham ◽  
...  

2020 ◽  
Vol 498 (2) ◽  
pp. 1891-1904
Author(s):  
Mark L A Richardson ◽  
Laurence Routledge ◽  
Niranjan Thatte ◽  
Matthias Tecza ◽  
Ryan C W Houghton ◽  
...  

ABSTRACT We present simulated observations of gas kinematics in a galaxy formed in a 10 pc resolution cosmological simulation with the hydrodynamical +   N-body code ramses, using the new ramses2hsim pipeline with the simulated observing pipeline (hsim) for the Extremely Large Telescope High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI IFS). We post-process the galaxy's gas kinematics and Hα line emission for each simulation cell, and integrate the emission to produce an extinction-corrected input cube. We then simulate observations of the input cube with HARMONI, for a range of exposure times, spatial sampling, and spectral resolution. We analyse the mock observations to recover galaxy properties such as its kinematics and compare with the known simulation values. We investigate the cause of biases between the ‘real’ and ‘observed’ kinematic values, demonstrating the sensitivity of the inferred rotation curve to knowledge of the instrument’s point spread function.


2008 ◽  
Author(s):  
Simon C. Ellis ◽  
Joss Bland-Hawthorn ◽  
Anthony Horton ◽  
Roger Haynes ◽  
Andrew McGrath

2014 ◽  
Vol 10 (S309) ◽  
pp. 11-16
Author(s):  
Ray Sharples ◽  

AbstractKMOS is a multi-object near-infrared integral field spectrograph built by a consortium of UK and German institutes for the ESO Paranal Observatory. KMOS completed commissioning at the ESO VLT in Spring 2013 and was made available to the user community from Oct 2013. We present the unique capabilities of KMOS for 3D galaxy surveys and report on the on-sky performance verification measured during three commissioning runs on the ESO VLT in 2012/13 and some of the early science results.


1999 ◽  
Vol 16 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Peter J. McGregor ◽  
Peter Conroy ◽  
Gabe Bloxham ◽  
Jan van Harmelen

AbstractIn late 1998 the International Gemini Project Office identified a need for a low cost, near-infrared spectrograph to be commissioned on the Gemini South telescope on the shortest possible timescale. In response, the Research School of Astronomy and Astrophysics of the Australian National University proposed to design, construct, and commission a near-infrared, integral-field spectrograph on Gemini. The science drivers and novel design of the Near-infrared Integral-Field Spectrograph (NIFS) are described in this paper. NIFS will achieve significant economies in cost and schedule in several ways:• By addressing targeted science with high efficiency. NIFS will primarily target velocity measurements in galaxies to study the demographics of black holes in galactic nuclei and the evolution of structural properties in high redshift galaxies. However, NIFS will also be applied to a wide range of general astronomical topics, but these will not dictate the instrument design.• By adopting a largely fixed-format design. A 3·2″ × 3·2″ ‘stair-case’ integral field unit (IFU) will feed a near-infrared spectrograph with four fixed-angle gratings mounted on a single grating wheel. A single, fixed-format camera will form the spectral image on a 2048 × 2048 Rockwell HgCdTe HAWAII-2 array. Two-pixel spectral resolving powers of ∼5400 will be achieved with complete wavelength coverage in each of the J, H, and K photometric bands through 32 optimally sampled 0·1″ wide slitlets. The velocity resolution of ∼55 km s−1 will be sufficient to achieve the targeted science objectives, and will allow software rejection of OH airglow lines.• By packaging the NIFS instrument within a duplicate of the Near-Infrared Imager (NIRI) cryostat. The NIRI cryostat, On-Instrument Wavefront Sensor (OIWFS), detector focusing mechanism, control system, and EPICS software will all be duplicated with only minimal change. Construction of the duplicate NIRI cryostat, OIWFS, and control system will be done by the University of Hawaii.


Sign in / Sign up

Export Citation Format

Share Document