Multi-Channel Data-Logging: Towards Determination of Behaviour and Metabolic Rate in Free-Swimming Sharks

Author(s):  
Adrian C. Gleiss ◽  
Samuel H. Gruber ◽  
Rory P. Wilson
1961 ◽  
Vol 13 (2) ◽  
pp. 180-185 ◽  
Author(s):  
J. Georg ◽  
K. Mellemgaard

1997 ◽  
Vol 36 (4) ◽  
pp. 310-312 ◽  
Author(s):  
F. Thielecke ◽  
J. Möseneder ◽  
A. Kroke ◽  
K. Klipstein-Grobusch ◽  
H. Boeing ◽  
...  

2021 ◽  
Author(s):  
Jenni M. Prokkola ◽  
Eirik R Åsheim ◽  
Sergey Morozov ◽  
Paul Bangura ◽  
Jaakko Erkinaro ◽  
...  

1. The physiological underpinnings of life history adaptations in ectotherms are not well understood. Theories suggest energy metabolism influences life history variation via modulation of resource acquisition. However, the genetic basis of this relation and its dependence on ecological conditions, such as food availability, have rarely been characterized, despite being critical to predicting the responses of populations to environmental changes. 2. The Atlantic salmon (Salmo salar) is an emerging wild model species for addressing these questions; strong genetic determination of age-at-maturity at two unlinked genomic regions (vgll3 and six6) enables the use of complex experimental designs and tests of hypotheses on the physiological and genetic basis of life-history trait variation. 3. In this study, we crossed salmon to obtain individuals with all combinations of late and early maturation genotypes for vgll3 and six6 within full-sib families. Using more than 250 juveniles in common garden conditions, we tested (i) whether metabolic phenotypes (i.e., standard and maximum metabolic rates, and absolute aerobic scope) were correlated with the age-at-maturity genotypes and (ii) if high vs. low food availability modulated the relationship. 4. We found that salmon with vgll3 early maturation genotype had a higher aerobic scope and maximum metabolic rate, but not standard metabolic rate, compared to salmon with vgll3 late maturation genotype. This suggests that physiological or structural pathways regulating maximum oxygen supply or demand are potentially important for the determination of age-at-maturity in Atlantic salmon. 5. Vgll3 and six6 exhibited physiological epistasis, whereby maximum metabolic rate significantly decreased when late maturation genotypes were present concurrently in both loci compared to other genotype combinations. 6. The growth of the feed restricted group decreased substantially compared to the high food group. However, the effects of life-history genomic regions were similar in both feeding regimes, indicating a lack of genotype-by-environment interactions. 7. Our results indicate that aerobic performance of juvenile salmon may affect their age-at-maturity. The results may help to better understand the mechanistic basis of life-history variation, and the metabolic constrains on life-history evolution.


2021 ◽  
Vol 27 (1) ◽  
pp. 92-99
Author(s):  
Gary J. Farkas ◽  
Alicia Sneij ◽  
David R. Gater

Following a spinal cord injury (SCI), neurogenic obesity results from changes in body composition, physical impairment, and endometabolic physiology and when dietary intake exceeds energy expenditure. Given the postinjury reductions in lean body mass, sympathetic nervous system dysfunction, and anabolic deficiencies, energy balance is no longer in balance, and thereby an obesogenic environment is created that instigates cardiometabolic dysfunction. Accurate determination of metabolic rate can prevent excess caloric intake while promoting positive body habitus and mitigating obesity-related comorbidities. Metabolic rate as determined by indirect calorimetry (IC) has not been adopted in routine clinical care for persons with SCI despite several studies indicating its importance. This article reviews current literature on measured and predicted metabolic rate and energy expenditure after SCI and stresses the importance of IC as standard of care for persons with SCI.


2019 ◽  
Vol 70 (3) ◽  
pp. 437 ◽  
Author(s):  
Karissa O. Lear ◽  
Nicholas M. Whitney ◽  
Lauran R. Brewster ◽  
Adrian C. Gleiss

Measuring the metabolic rate of animals is an essential part of understanding their ecology, behaviour and life history. Respirometry is the standard method of measuring metabolism in fish, but different respirometry methods and systems can result in disparate measurements of metabolic rate, a factor often difficult to quantify. Here we directly compare the results of two of the most common respirometry systems used in elasmobranch studies, a Steffensen-style flume respirometer and an annular static respirometer. Respirometry trials with juvenile lemon sharks Negaprion brevirostris were run in both systems under the same environmental conditions and using the same individuals. Relationships between metabolic rate, swimming speed, overall dynamic body acceleration (ODBA) and tail beat frequency (TBF) were compared between the two systems. The static respirometer elicited higher TBF and ODBA for a given swimming speed compared with the flume respirometer, although it produced relationships between kinematic parameters that were more similar to those observed in free-swimming animals. Metabolic rates and swimming speeds were higher for the flume respirometer. Therefore, although flume respirometers are necessary for many types of controlled laboratory studies, static respirometers may elicit lower stress and produce results that are more applicable to fish in wild systems.


Sign in / Sign up

Export Citation Format

Share Document