Groundwater Impacts radioactive radioactive waste groundwater impacts of Radioactive Wastes radioactive radioactive waste and Associated Environmental Modeling Assessment

Author(s):  
Rui Ma ◽  
Chunmiao Zheng ◽  
Chongxuan Liu
2019 ◽  
pp. 23-29
Author(s):  
M. Semerak ◽  
S. Lys ◽  
T. Kovalenko

The possibility of the plasma processing of low-level or intermediatelevel radioactive wastes in the reactor equipped with arc plasmatrons is shown. The reactor design for the plasma processing of the radioactive wastes that allows promoting the efficiency of the plasma processing of the radioactive wastes (RAW) by the increasing of the speed and the intensity of the plasma pyrolysis is proposed. The various methods for RAW preparation, dosage and supply into the plasmochemical reactor have been investigated. The waste which is supplied to the reactor can be in various aggregate states (solid, liquid or gaseous) depending on which different kinds of preparation, dosage, and supply of RAW materials to the plasmochemical reactor are used. The solid waste must be ground for increasing of the phase separation surface. The degree of grinding of the wastes depends on their further reprocessing. The reactor allows processing of the mixed-type radioactive waste, which includes both combustible and non-combustible components. The wastes can be packed or ground up. The selected technological regimes should provide temperature from 1500 °C in the melting chamber to 250 °C in the upper part in the pyrogas exit zone to prevent the flow-out of volatile compounds of a series of radionuclides and heavy metals from the furnace and to process the waste and merge slag melt without adding of fluxes. The fused slag is a basaltiform monolith, where the content of aluminum oxide reaches 28%; silicon oxide up to 56%; sodium oxide from 2.5 to 11 %. The resulting radioactive slag is extremely resistant to the chemical influence. The pyrogas produced in the shaft furnace will have a heating value of about 5 MJ/nm3. This allows, after initial heating by plasmatron, maintaining the required temperature in the combustion chamber due to the heat released during combustion of the pyrogas, when the plasma heating source is switched off, and burning the resin and soot effectively. It is proved that the plasma technology for RAW reprocessing allows a significant reduction in waste volumes and waste placement for long-term storage with the most efficient use of storage facilities.


1981 ◽  
Vol 6 ◽  
Author(s):  
P. V. Kelsey ◽  
R. P. Schuman ◽  
J. M. Welch ◽  
D. E. Owen ◽  
J. E. Flinn

ABSTRACTDemonstration tests were performed on iron-enriched basalt (IEB), a dissolution and immobilization medium for TMI radioactive wastes. Zeolite of the type used for cesium and strontium decontamination of TMI containment water was mixed with 20 wt% additives and melted at 1500°C to form IEB. Cesium volatility from the IEB melts was low. Leaching tests in 90°C deionized water showed leach rates of 6 μg/cm2 d for both cesium and strontium. IEB melts were used to dissolve Type 304 SS pellets and UO2 pellets clad with zircaloy in order to simulate immobilization of TMI core debris. Bubbling air through the melts greatly enhanced the dissolution of these components.


Author(s):  
Hirokazu Tanaka ◽  
Masao Shimizu ◽  
Susumu Tojo ◽  
Ryoji Tanimoto ◽  
Kazuhiko Maekawa ◽  
...  

From 1998 through 2005, the facilities for research and development (R&D) of uranium ore-dressing and uranium fuel etc. were decommissioned and soil contaminated by uranium was collected. All the pieces of apparatus in the nuclear facilities which might be contaminated with uranium were treated as radioactive wastes. At the time of the decommissioning activity, there was no specific value to judge as radioactive wastes. So MMC considered and adopted the pragmatic procedure to judge that soil was radioactive waste or not. During decommissioning facilities and collecting soil, the environmental monitoring was conducted. And it was confirmed that these activities had no influence on the surrounding areas. All decommissioning activities were finished with no difficulty. The wastes generated from the decommissioning activities were packed in the steel containers and have been stored safely in the storehouse built in the same area. In this report, the details of decommissioning activities are described.


Author(s):  
Robert Walthéry ◽  
Lucien Teunckens ◽  
Patrick Lewandowski ◽  
Danny Millen ◽  
Sven Baumann

Abstract When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as ‘suspected material’. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30% of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of May 2001, after 6 years of operation, 523 Mg of contaminated metal has been treated. 182 Mg of this material was unconditionally released, having been monitored twice by the in-house health physics department. About 303 Mg of the metal, presenting surfaces that could not be measured due to their shape, were melted for unconditional release in a controlled melting facility. The suitability of the abrasive blasting system was verified, and it was proved that there was no intrusion of contamination into the material surface. The paper gives an overview of the experience relating to the decontamination of metal material by abrasive blasting at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium.


Author(s):  
Mick Bacon ◽  
Doug Ilett ◽  
Andy Whittall

In 2006 the UK Governments response to recommendations by its Committee on Radioactive Waste Management (CoRWM) established, in England and Wales, that geological disposal, supported by safe and secure interim storage, is the preferred route for the long-term management of higher-activity radioactive waste (i.e. that which is not suitable for near-surface disposal). It also gave the responsibility for delivering the programme for a deep geological repository to the Nuclear Decommissioning Authority (NDA). The Scottish Government has a policy of long term, near site, near surface safe and secure interim storage. To support the open and transparent approach promised by Government, the Health and Safety Executive (HSE), the Environment Agency and the Scottish Environment Protection Agency (SEPA) are developing joint guidance on the management of higher-activity radioactive waste to explain regulatory objectives in securing safe and secure interim storage and the associated management of radioactive wastes. The guidance comes in two parts: • Guidance on the regulatory process; • Technical guidance modules. The guidance promotes a cradle to grave approach to radioactive waste management and by aligning the regulatory interests of environmental and safety regulators it delivers one of the Government’s “Better Regulation” objectives. This paper describes the process by which the joint guidance was produced with particular emphasis on stakeholder engagement. It describes the key features of the guidance, including the concept of the radioactive waste management case (RWMC). Finally the problems encountered with dissemination and implementation are discussed together with measures taken by the regulators to improve these aspects.


Author(s):  
Paul McClelland ◽  
Frank Dennis ◽  
Mark Liddiard

Clearance is a very important part of any effective waste management strategy for both operating and decommissioning nuclear facilities. Radioactive waste disposal capacity is becoming an increasingly valuable resource and costs for disposal of radioactive wastes continue to dramatically rise. Considerable cost savings may be realised by efficient segregation of essentially non-radioactive material from radioactive wastes. The release of these materials from licensed nuclear sites for disposal, reuse or recycle without further regulatory controls is commonly referred to by the nuclear industry as “clearance”. Although much effort has been directed at establishing national clearance levels, below which, materials may be released without further regulatory controls, there is little practical guidance regarding implementation into local waste management programmes. Compliance with regulatory clearance limits is a relatively straightforward technical exercise involving appropriate management control and monitoring of the material. Whilst this is sufficient to avoid prosecution for breach of regulatory requirements, it is not sufficient to avoid a myriad of political and public relations land mines. When material is unconditionally released, unless additional attention is given to management of its future destination off-site, it may end up anywhere. The worst nightmare for a waste manager at a nuclear site is headlines in local and national newspapers such as, “RADIOACTIVE WASTE DISPOSED IN LOCAL MUNICIPAL LANDFILL,” or, “RADIOACTIVE WASTE USED AS CONSTRUCTION MATERIAL FOR CHILDRENS PLAYGROUND,” etc. Even if the material were released legally, the cost of recovering from such a situation is potentially very large, and such public relations disasters could threaten to end the clearance programme at the given site, if not nationally. This paper describes how national regulatory clearance levels have been implemented for the decommissioning of the Dounreay nuclear site in the far north of Scotland. It specifically focuses on the management of public relations aspects of clearance in order to limit the exposure to non-regulatory pressures and liabilities associated with clearance programmes from nuclear sites. The issues are put into context for uncontaminated wastes, trace contaminated wastes and management of contaminated land.


Author(s):  
Gheorghe Barariu

Most of the radioactive wastes generated in Romania, are due to nuclear activities related to power generation at Cernavoda Nuclear Power Plant NPP Unit 1 and Unit 2. It is provided to construct 2 new Units, in the next period. In Romania, the Nuclear Agency & Radioactive Waste - AN&DR, has established the strategy on low and intermediate level waste disposal and has as objective the commissioning of Final Repository for Low and Intermediate Level Waste – DFDSMA, until 2019. This facility, is in the responsibility of AN&DR. On the other hand, wastes arising from Cernavoda NPP must be treated, in order to achieve the acceptance criteria of DFDSMA. Corresponding Radioactive Waste Treatment Plant - RWTP is in the responsibility of Cernavoda NPP. The main requirement for the RWTP is the necessity to achieve the treatment and conditioning of radioactive wastes that arise both, from NPP operation and from future decommissioning activities of the nuclear facilities, such as to comply with the acceptance criteria of DFDSMA. According to existing requirements, it is necessary to elaborate a Decommissioning Plan, in order to obtain the authorization for construction of the new units. The Decommissioning Plan of Cernavoda NPP will imply the development of a Waste Management Plan, based on existing waste treatment technologies. Taking into account that, the radioactive waste management represents about 43%, comparative with decommissioning activities, which represents only about 35% from total budget of decommissioning, of a CANDU 6 NPP Unit, the paper will present the methodology developed, in order to obtain the optimum Waste Management Plan, taking into account the reduction of environmental impact.


Sign in / Sign up

Export Citation Format

Share Document