GPS: Applications in Crustal Deformation Monitoring

2011 ◽  
pp. 589-622 ◽  
Author(s):  
Jessica Murray-Moraleda
Author(s):  
Makoto Murakami ◽  
Satoshi Fujiwara ◽  
Takuya Nishimura ◽  
Mikio Tobita ◽  
Hiroyuki Nakagawa ◽  
...  

1993 ◽  
Vol 156 ◽  
pp. 279-284
Author(s):  
Yehuda Bock ◽  
Jie Zhang ◽  
Peng Fang ◽  
Joachim Genrich ◽  
Keith Stark ◽  
...  

The Permanent GPS Geodetic Array (PGGA) in southern California consists of five continuously operating stations established to monitor crustal deformation in near real time. The near real time requirement has been problematic since GPS satellite ephemerides and predicted earth orientation values (IERS Bulletins A and B) have been found to be neither sufficiently timely nor accurate to achieve horizontal position accuracies of several mm on regional scales. Therefore, we have been estimating precise GPS ephemerides and polar motion since August 1991. An examination of overlapping 24-hour satellite arcs indicates worst-case orbital errors of approximately 0.2 meters in the radial components, 1 meter in the cross-track components and 2–3 meters in the along-track components. A comparison with very long baseline interferometry indicates an accuracy of less than 1 mas in our determination of 24-hour values of pole position. These products are sufficiently timely and accurate to achieve several mm long-term horizontal precision in regional scale measurements of crustal deformation in near real time, as has been demonstrated during the 28 June, 1992 Landers and Big Bear earthquakes in southern California. The PGGA stations were able to detect seismically induced, sub-centimeter-level motions with respect to a terrestrial reference frame defined by the global tracking stations.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dinh Trong TRAN ◽  
Quoc Long NGUYEN ◽  
Dinh Huy NGUYEN

In processing of position time series of crustal deformation monitoring stations by continuousGNSS station, it is very important to determine the motion model to accurately determine the displacementvelocity and other movements in the time series. This paper proposes (1) the general geometric model foranalyzing GNSS position time series, including common phenomena such as linear trend, seasonal term,jumps, and post-seismic deformation; and (2) the approach for directly estimating time decay ofpostseismic deformations from GNSS position time series, which normally is determined based on seismicmodels or the physical process seismicity, etc. This model and approach are tested by synthetic positiontime series, of which the calculation results show that the estimated parameters are equal to the givenparameters. In addition they were also used to process the real data which is GNSS position time series of4 CORS stations in Vietnam, then the estimated velocity of these stations: DANA (n, e, u = -9.5, 31.5, 1.5mm/year), HCMC (n, e, u = -9.5, 26.2, 1.9 mm/year), NADI (n, e, u = -10.6, 31.5, -13.4 mm/year), andNAVI (n, e, u = -13.9, 32.8, -1.1 mm/year) is similar to previous studies.


2000 ◽  
Vol 109 (6) ◽  
pp. Plate9-Plate10
Author(s):  
Makoto MURAKAMI ◽  
Mikio TOBITA ◽  
Hiroshi YARAI ◽  
Shinzaburo OZAWA ◽  
Takuya NISHIMURA ◽  
...  

2018 ◽  
Vol 123 (2) ◽  
pp. 1987-2002 ◽  
Author(s):  
Jianghui Geng ◽  
Yuanxin Pan ◽  
Xiaotao Li ◽  
Jiang Guo ◽  
Jingnan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document