terrestrial reference frame
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 74)

H-INDEX

24
(FIVE YEARS 3)

GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guo Chen ◽  
Na Wei ◽  
Min Li ◽  
Qile Zhao ◽  
Yujiao Niu ◽  
...  

2021 ◽  
Vol 6 (24) ◽  
pp. 161-173
Author(s):  
Nur Adilla Zulkifli ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris ◽  
Zheng Yong Chien

The Geocentric Datum of Malaysia (GDM200) is realised with respect to International Terrestrial Reference Frame (ITRF) 2000 at epoch 2nd January 2000. In comparison with the 2000 frame, ITRF2014 has significant improvement in terms of its definition and realisation. Moreover, several great earthquakes that struck the Indonesian region for the past decades have deformed the tectonic plate, resulting in a shifted GDM2000. These earthquakes, followed by post-seismic activities, has caused GDM2000 to become obsolete. Following that, the Department of Survey and Mapping Malaysia (DSMM) has taken the initiative to revise the coordinate of Malaysia Real-Time Kinematic Global Navigation Satellite Systems (GNSS) Network (MyRTKnet) stations in GDM2000 into a new set of coordinates. Therefore, this paper presents an effort to analyse the differences between coordinates in GDM2000 based on 2009 and 2016 revisions. In order to measure the discrepancy, forty-seven (47) MyRTKnet stations in Peninsular Malaysia were chosen to estimate the differences between the two (2) revisions. The coordinates obtained from MyRTKnet stations were then projected into Rectified Skewed Orthomorphic (RSO) coordinate system to compute the differences in horizontal position and ellipsoidal height. The finding showed that the discrepancy ranges from 0.8 to 11.8 cm, with the smallest values at SETI station and the biggest value at KRAI station. Meanwhile, for the differences in ellipsoidal height, LIPI station has the biggest value of 8.1 cm, followed by the smallest value of 0.4 cm at SETI station. In conclusion, as the differences in revision gave impact on the changes of coordinates of MyRTKnet stations in Peninsular Malaysia, the frequent revision of GDM2000 should also consider the latest frame to give better positional accuracy, and a proper datum transformation (ITRF2014 to ITRF2000) need to be implemented for mapping purposes.


2021 ◽  
Author(s):  
Pierre Sakic ◽  
Gustavo Mansur ◽  
Benjamin Männel ◽  
Andreas Brack ◽  
Harald Schuh

Over the past years, the International GNSS Service (IGS) has put efforts into reprocessing campaigns reanalyzing the full data collected by the IGS network since 1994. The goal is to provide a consistent set of orbits, station coordinates, and earth rotation parameters using state-of-the-art models. Different from the previous campaigns - namely: repro1 and repro2 - the repro3 includes not only GPS and GLONASS but also the Galileo constellation. The main repro3 objective is the contribution to the next realization of the International Terrestrial Reference Frame (ITRF2020). To achieve this goal, several Analysis Centers (AC) submitted their specific products, which are combined to provide the final solutions for each product type. In this contribution, we focus on the combination of the orbit products.We will present a consistent orbit solution based on a newly developed combination strategy where the weights are determined by a Least-Squares Variance Component Estimation (LSVCE). The orbits are combined in an iterative processing, first aligning all the products via a Helmert transformation, second defining which satellites will be used in the LSVCE, and finally normalizing the inverse of the variances as weights that are used to compute a weighted mean. Moreover, we will discuss the weight factors and their stability in the time evolution for each AC depending on the constellations. In addition, an external validation using a Satellite Laser Ranging (SLR) procedure will be shown for the combined solution.


2021 ◽  
Author(s):  
Pierre Sakic ◽  
Gustavo Mansur ◽  
Benjamin Männel ◽  
Andreas Brack ◽  
Harald Schuh

Over the past years, the International GNSS Service (IGS) has put efforts into reprocessing campaigns reanalyzing the full data collected by the IGS network since 1994. The goal is to provide a consistent set of orbits, station coordinates, and earth rotation parameters using state-of-the-art models. Different from the previous campaigns - namely: repro1 and repro2 - the repro3 includes not only GPS and GLONASS but also the Galileo constellation. The main repro3 objective is the contribution to the next realization of the International Terrestrial Reference Frame (ITRF2020). To achieve this goal, several Analysis Centers (AC) submitted their specific products, which are combined to provide the final solutions for each product type. In this contribution, we focus on the combination of the orbit products.We will present a consistent orbit solution based on a newly developed combination strategy where the weights are determined by a Least-Squares Variance Component Estimation (LSVCE). The orbits are combined in an iterative processing, first aligning all the products via a Helmert transformation, second defining which satellites will be used in the LSVCE, and finally normalizing the inverse of the variances as weights that are used to compute a weighted mean. Moreover, we will discuss the weight factors and their stability in the time evolution for each AC depending on the constellations. In addition, an external validation using a Satellite Laser Ranging (SLR) procedure will be shown for the combined solution.


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 391
Author(s):  
Sajad Tabibi ◽  
Renaldo Sauveur ◽  
Kelly Guerrier ◽  
Gerard Metayer ◽  
Olivier Francis

Geodetic Global Navigation Satellite System reflectometry (GNSS-R) uses ground-based signals of opportunity to retrieve sea levels at an intermediate spatial scale. Geodetic GNSS-R is based on the simultaneous reception of Line-of-Sight (LoS) and its coherent GNSS sea surface reflection (non-LOS) signals. The scope of this paper is to present geodetic GNSS-R applied to sea level altimetry. Signal-to-Noise Ratio (SNR) measurements from a Commercial Off-The-Shelf (COTS) geodetic-quality GNSS station at the Haiti Coast Guard Base in Port-au-Prince is used to retrieve sea levels in the International Terrestrial Reference Frame 2014 (ITRF2014). The GNSS-R sea levels are compared with those of the OTT Radar Level Sensor (RLS) installed vertically below the GNSS antenna. The Root-Mean-Square Error (RMSE) between the geodetic GNSS-R sea levels and OTT RLS records is 3.43 cm, with a correlation of 0.96. In addition, the complex differences between the OTT RLS records and 15-min GNSS-R sea levels using Global Positioning System (GPS) and Globalnaya Navigazionnaya Sputnikovaya Sistema (or Global Navigation Satellite System; GLONASS) signals for all the eight major tidal constituents are in mm-level agreement. Therefore, geodetic GNSS-R can be used as a complementary approach to the conventional method for sea level studies in a stable terrestrial reference frame.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Jaakko Mäkinen

AbstractThe International Height Reference System (IHRS), adopted by International Association of Geodesy (IAG) in its Resolution No. 1 at the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Prague in 2015, contains two novelties. Firstly, the mean-tide concept is adopted for handling the permanent tide. While many national height systems continue to apply the mean-tide concept, this was the first time that the IAG officially introduced it for a potential field quantity. Secondly, the reference level of the height system is defined by the equipotential surface where the geopotential has a conventional value W0 = 62,636,853.4 m2 s–2. This value was first determined empirically to provide a good approximation to the global mean sea level and then adopted as a reference value by convention. I analyse the tidal aspects of the reference level based on W0. By definition, W0 is independent of the tidal concept that was adopted for the equipotential surface, but for different concepts, different functions are involved in the W of the equation W = W0. I find that, in the empirical determination of the adopted estimate W0, the permanent tide is treated inconsistently. However, the consistent estimate from the same data rounds off to the same value. I discuss the tidal conventions and formulas for the International Height Reference Frame (IHRF) and the realisation of the IHRS. I propose a simplified definition of IHRF geopotential numbers that would make it possible to transform between the IHRF and zero-tide geopotential numbers using a simple datum-difference surface. Such a transformation would not be adequate if rigorous mean-tide formulas were imposed. The IHRF should adopt a conventional (best) estimate of the permanent tide-generating potential, such as that which is contained in the International Earth Rotation and Reference Systems Service Conventions, and use it as a basis for other conventional formulas. The tide-free coordinates of the International Terrestrial Reference Frame and tide-free Global Geopotential Models are central in the modelling of geopotential for the purposes of the IHRF. I present a set of correction formulas that can be used to move to the zero-tide model before, during, or after the processing, and finally to the mean-tide IHRF. To reduce the confusion around the multitude of tidal concepts, I propose that modelling should primarily be done using the zero-tide concept, with the mean-tide potential as an add-on. The widespread use of the expression “systems of permanent tide” may also have contributed to the confusion, as such “systems” do not have the properties that are generally associated with other “systems” in geodesy. Hence, this paper mostly uses “concept” instead of “system” when referring to the permanent tide.


2021 ◽  
Vol 65 (03) ◽  
pp. 361-384
Author(s):  
Sandi Berk ◽  
Klemen Medved

The current Slovenian terrestrial reference frame (D96-17) is a static frame based on GNSS technology. An additional transformation connecting it with the new realisation of ETRS89 accepted by EUREF (D17) gives the D96-17 a specific character. In order to ensure a high-quality national terrestrial reference frame, connection to the current realisation of ITRS is needed. This change is particularly important in the light of the intended transition to the semi-kinematic terrestrial reference frame, supported by a national geo-kinematic model. Transformations between the current national and international terrestrial reference frames are discussed in detail in the present paper. Processes, equations, and parameters of datum transformations are given in both directions (forward and inverse), step-by-step and direct ones, rigorous and simplified (approximate). Furthermore, an analysis of coordinate differences between current Slovenian and international terrestrial reference frames and an analysis of coordinate errors for various simplifications of transformation between both reference frames are given. This allows users to choose an optimal transformation solution to meet their requirements. The role and importance of transformations under consideration in the positioning procedures and the precise navigation are also addressed.


2021 ◽  
Vol 13 (12) ◽  
pp. 2304
Author(s):  
Jiao Liu ◽  
Junping Chen ◽  
Peizhao Liu ◽  
Weijie Tan ◽  
Danan Dong ◽  
...  

A terrestrial reference frame (TRF) is derived based on historical geodetic data and is normally updated every 5–6 years. The three most recent International Terrestrial Reference System (ITRS) realizations, ITRF2014, DTRF2014, and JTRF2014, were determined with different strategies, which has resulted in different signals in the reference frame parameters. In this paper, we used the continuous site position time series of International GNSS Service (IGS) from 1995 to 2020 as a benchmark to investigate the characteristics of the three frames. In the comparison, the ITRS realizations were divided into the determination and prediction sections, where the site coordinates of the TRFs were extrapolated in the prediction period. The results indicated that the orientation and scale parameters of the ITRF2014, and the IGS solutions showed excellent agreement during the determination period of ITRF2014, while, during the prediction period, the orientation parameter diverged from IGS with rates of 11.9, 5.5, and 8.4 as/yr, and the scale degraded with a rate of −0.038 ppb/yr. The consistency of the origin parameters between the DTRF2014 and the IGS solutions during the two periods changed from 0.07, 0.11, and −0.15 mm/yr to −0.17, −0.18, and −0.12 mm/yr; the consistency of orientation parameters from −3.6, −1.9, and 2.9 as/yr to 15.9, −2.3, and 13.2 as/yr; and the consistency of scale from 0.007 to −0.005 ppb/yr. In the comparison between the JTRF2014 and IGS solutions, annual signals in the origin differences were 1.5, 3.0, and 2.4 mm in the X, Y, and Z components, respectively, and the temporal variation trends in different periods disagreed with their long-term trends. Obvious trend switches in the rotation parameters were also observable, and the complex temporal variation characteristics of the scale offsets may be related to the scale definition strategy applied in different TRFs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maciej Michalczak ◽  
Marcin Ligas

Abstract Coordinates of the Earth’s pole represent two out of five Earth orientation parameters describing Earth’s rotation. They are necessary in transformation between celestial reference frame and terrestrial reference frame and what goes further in precise positioning and navigation, applications in astronomy, communication with outer space objects. Complexity of measuring techniques and data processing involved in the pole coordinates determination make it impossible to obtain them in real-time mode, hence a prediction problem of the polar motion emerges. In this study, geostatistical prediction methods, i. e., simple and ordinary kriging are applied. Millions of predictions have been performed to draw reasonable conclusions on prediction capabilities of applied kriging variants. The study is intended in ultra-short-term prediction (up to 15 days into the future) using the IERS EOP 14 C04 (IAU2000A) and IERS EOP 05 C04 (IAU2000A) series as a reference. Mean absolute prediction errors (for days 1–15) with respect to IERS 14 C04 are ranging 0.66–5.25 mas for PMx and 0.47–3.59 mas for PMy. On the other hand, for IERS 05 C04 the values are 0.60–4.95 mas and 0.44–3.29 mas for PMx and PMy; respectively. The results indicate competitiveness of the introduced methods with existing ones.


Sign in / Sign up

Export Citation Format

Share Document