scholarly journals One Year of Daily Satellite Orbit and Polar Motion Estimation for Near Real Time Crustal Deformation Monitoring

1993 ◽  
Vol 156 ◽  
pp. 279-284
Author(s):  
Yehuda Bock ◽  
Jie Zhang ◽  
Peng Fang ◽  
Joachim Genrich ◽  
Keith Stark ◽  
...  

The Permanent GPS Geodetic Array (PGGA) in southern California consists of five continuously operating stations established to monitor crustal deformation in near real time. The near real time requirement has been problematic since GPS satellite ephemerides and predicted earth orientation values (IERS Bulletins A and B) have been found to be neither sufficiently timely nor accurate to achieve horizontal position accuracies of several mm on regional scales. Therefore, we have been estimating precise GPS ephemerides and polar motion since August 1991. An examination of overlapping 24-hour satellite arcs indicates worst-case orbital errors of approximately 0.2 meters in the radial components, 1 meter in the cross-track components and 2–3 meters in the along-track components. A comparison with very long baseline interferometry indicates an accuracy of less than 1 mas in our determination of 24-hour values of pole position. These products are sufficiently timely and accurate to achieve several mm long-term horizontal precision in regional scale measurements of crustal deformation in near real time, as has been demonstrated during the 28 June, 1992 Landers and Big Bear earthquakes in southern California. The PGGA stations were able to detect seismically induced, sub-centimeter-level motions with respect to a terrestrial reference frame defined by the global tracking stations.

2021 ◽  
Author(s):  
Duygu Kiyan ◽  
Ásdís Benediktsdóttir ◽  
Gylfi P. Hersir ◽  
Magnús T. Guðmundsson ◽  
Christopher J. Bean ◽  
...  

<p>Hekla is one of Iceland’s most active volcanoes having had 18 summit eruptions in the last 1,100 years with the most recent eruption in 2000. Hekla volcano has been studied extensively using various geodetic methods. Most recent deformation studies (InSAR) in relation to the 2000 eruption of Hekla have addressed the proposed location of a deep-seated magma reservoir at approximately 10 km (Sturkell et al., 2013) where other studies indicate a greater depth (Ofeigsson et al., 2011). A regional-scale magnetotelluric (MT) survey (Eysteinsson and Hermance 1985) conducted in 1982 suggested the estimated depths for the magma chamber beneath the volcano to be between 5 and 24 km. Our new project MTHEK (MagnetoTelluric Assessment of the HEKla Volcano) aims at identifying low-resistivity zones at depth, which may be a proxy for melt accumulation and migration pathways, and may constrain the location of the proposed magma reservoir. The geoelectrical models obtained will enable us to highlight potential real-time electromagnetic monitoring locations which may complement the current real-time seismic/deformation monitoring.</p><p>In September 2020, broadband MT data were acquired at 20 stations around and to the south of Hekla volcano. The horizontal electric field components were recorded using 50-60 m dipoles, and the three components of the magnetic field were measured using induction coils. At most stations, the recording time was approximately 20 hours, and a distant remote reference site (approximately 100 km away) was recording during the whole survey. The period range of good quality data obtained is about 300 Hz to 1,000 - 2,000 s. In addition, at 17 MT stations central loop transient electromagnetic (TEM) data were collected using a transmitter loop of 200 m × 200 m and a 1 m<sup>2</sup> receiver loop with 100 windings (effective area 100 m<sup>2</sup>). The TEM data are used to correct the MT data for static shift effects caused by near surface inhomogeneities or steep topography. State of the art data processing and analysis methods are being applied to the data. Preliminary inversion models will be presented and provide a first idea of the resistivity structure of the volcano.</p>


1989 ◽  
Vol 79 (1) ◽  
pp. 189-198
Author(s):  
Stan Silverman ◽  
Carl Mortensen ◽  
Malcolm Johnston

Abstract A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GOES) system. Geophysical data primarily intended for earthquake hazard and crustal deformation monitoring are digitized with either 12-bit or 16-bit resolution and transmitted every 10 min through a satellite link to a bank of UNIX-based computers in Menlo Park, California. There the data are available for analysis and display within a few seconds of their transmit time. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alaska, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South Pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. Alert trigger levels based on physical models, signal resolution, and previous history have been defined for particular instrument types. Computer-driven remote paging and mail systems are used to notify appropriate personnel when alarm status is reached. The system supports continuous historical records of low-frequency geophysical data, software for extensive analysis of these data, and programs for modeling fault rupture with and without seismic radiation, as well as providing an environment for real-time attempts at earthquake prediction.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Keitaro Ohno ◽  
Yusaku Ohta ◽  
Satoshi Kawamoto ◽  
Satoshi Abe ◽  
Ryota Hino ◽  
...  

AbstractRapid estimation of the coseismic fault model for medium-to-large-sized earthquakes is key for disaster response. To estimate the coseismic fault model for large earthquakes, the Geospatial Information Authority of Japan and Tohoku University have jointly developed a real-time GEONET analysis system for rapid deformation monitoring (REGARD). REGARD can estimate the single rectangular fault model and slip distribution along the assumed plate interface. The single rectangular fault model is useful as a first-order approximation of a medium-to-large earthquake. However, in its estimation, it is difficult to obtain accurate results for model parameters due to the strong effect of initial values. To solve this problem, this study proposes a new method to estimate the coseismic fault model and model uncertainties in real time based on the Bayesian inversion approach using the Markov Chain Monte Carlo (MCMC) method. The MCMC approach is computationally expensive and hyperparameters should be defined in advance via trial and error. The sampling efficiency was improved using a parallel tempering method, and an automatic definition method for hyperparameters was developed for real-time use. The calculation time was within 30 s for 1 × 106 samples using a typical single LINUX server, which can implement real-time analysis, similar to REGARD. The reliability of the developed method was evaluated using data from recent earthquakes (2016 Kumamoto and 2019 Yamagata-Oki earthquakes). Simulations of the earthquakes in the Sea of Japan were also conducted exhaustively. The results showed an advantage over the maximum likelihood approach with a priori information, which has initial value dependence in nonlinear problems. In terms of application to data with a small signal-to-noise ratio, the results suggest the possibility of using several conjugate fault models. There is a tradeoff between the fault area and slip amount, especially for offshore earthquakes, which means that quantification of the uncertainty enables us to evaluate the reliability of the fault model estimation results in real time.


2021 ◽  
Vol 13 (12) ◽  
pp. 2259
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Qing Zhao ◽  
Zihan Peng ◽  
Rui Shang

A multipath is a major error source in bridge deformation monitoring and the key to achieving millimeter-level monitoring. Although the traditional MHM (multipath hemispherical map) algorithm can be applied to multipath mitigation in real-time scenarios, accuracy needs to be further improved due to the influence of observation noise and the multipath differences between different satellites. Aiming at the insufficiency of MHM in dealing with the adverse impact of observation noise, we proposed the MHM_V model, based on Variational Mode Decomposition (VMD) and the MHM algorithm. Utilizing the VMD algorithm to extract the multipath from single-difference (SD) residuals, and according to the principle of the closest elevation and azimuth, the original observation of carrier phase in the few days following the implementation are corrected to mitigate the influence of the multipath. The MHM_V model proposed in this paper is verified and compared with the traditional MHM algorithm by using the observed data of the Forth Road Bridge with a seven day and 10 s sampling rate. The results show that the correlation coefficient of the multipath on two adjacent days was increased by about 10% after residual denoising with the VMD algorithm; the standard deviations of residual error in the L1/L2 frequencies were improved by 37.8% and 40.7%, respectively, which were better than the scores of 26.1% and 31.0% for the MHM algorithm. Taking a ratio equal to three as the threshold value, the fixed success rates of ambiguity were 88.0% without multipath mitigation and 99.4% after mitigating the multipath with MHM_V. The MHM_V algorithm can effectively improve the success rate, reliability, and convergence rate of ambiguity resolution in a bridge multipath environment and perform better than the MHM algorithm.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia-Katerina Kufner ◽  
Najibullah Kakar ◽  
Maximiliano Bezada ◽  
Wasja Bloch ◽  
Sabrina Metzger ◽  
...  

AbstractBreak-off of part of the down-going plate during continental collision occurs due to tensile stresses built-up between the deep and shallow slab, for which buoyancy is increased because of continental-crust subduction. Break-off governs the subsequent orogenic evolution but real-time observations are rare as it happens over geologically short times. Here we present a finite-frequency tomography, based on jointly inverted local and remote earthquakes, for the Hindu Kush in Afghanistan, where slab break-off is ongoing. We interpret our results as crustal subduction on top of a northwards-subducting Indian lithospheric slab, whose penetration depth increases along-strike while thinning and steepening. This implies that break-off is propagating laterally and that the highest lithospheric stretching rates occur during the final pinching-off. In the Hindu Kush crust, earthquakes and geodetic data show a transition from focused to distributed deformation, which we relate to a variable degree of crust-mantle coupling presumably associated with break-off at depth.


2021 ◽  
Vol 11 (9) ◽  
pp. 3896
Author(s):  
Khaled M. Shalghum ◽  
Nor Kamariah Noordin ◽  
Aduwati Sali ◽  
Fazirulhisyam Hashim

Deterministic latency is an urgent demand to pursue the continuous increase in intelligence in several real-time applications, such as connected vehicles and automation industries. A time-sensitive network (TSN) is a new framework introduced to serve these applications. Several functions are defined in the TSN standard to support time-triggered (TT) requirements, such as IEEE 802.1Qbv and IEEE 802.1Qbu for traffic scheduling and preemption mechanisms, respectively. However, implementing strict timing constraints to support scheduled traffic can miss the needs of unscheduled real-time flows. Accordingly, more relaxed scheduling algorithms are required. In this paper, we introduce the flexible window-overlapping scheduling (FWOS) algorithm that optimizes the overlapping among TT windows by three different metrics: the priority of overlapping, the position of overlapping, and the overlapping ratio (OR). An analytical model for the worst-case end-to-end delay (WCD) is derived using the network calculus (NC) approach considering the relative relationships between window offsets for consecutive nodes and evaluated under a realistic vehicle use case. While guaranteeing latency deadline for TT traffic, the FWOS algorithm defines the maximum allowable OR that maximizes the bandwidth available for unscheduled transmission. Even under a non-overlapping scenario, less pessimistic latency bounds have been obtained using FWOS than the latest related works.


2017 ◽  
Vol 209 (3) ◽  
pp. 1408-1417 ◽  
Author(s):  
Rui Tu ◽  
Jinhai Liu ◽  
Cuixian Lu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. 293-310 ◽  
Author(s):  
Ryan A. Kromer ◽  
Antonio Abellán ◽  
D. Jean Hutchinson ◽  
Matt Lato ◽  
Marie-Aurelie Chanut ◽  
...  

Abstract. We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.


Sign in / Sign up

Export Citation Format

Share Document