Effect of Temperature and Crack Tip Velocity on the Crack Growth in Functionally Graded Materials

Author(s):  
Addis Kidane ◽  
Vijaya B. Chalivendra ◽  
Arun Shukla
2019 ◽  
Vol 9 (17) ◽  
pp. 3581 ◽  
Author(s):  
Jin-Rae Cho

This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened and improved by the stress recovery. The modified interaction integral M ˜ ( 1 , 2 ) was employed to evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed method was validated through the representative numerical examples and the effectiveness was justified by comparing the numerical results with the reference solutions.


2015 ◽  
Vol 830-831 ◽  
pp. 383-386 ◽  
Author(s):  
Akhil S. Karun ◽  
Hari Sanil ◽  
T.P.D. Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
B.C. Pai

Light weight aluminium alloys and low-density materials have drawn the attention of researchers as potential structural materials for transportation sector due to the requirement of effective reduction in fuel consumption, stringent emission norms and higher payload capacity. Functionally Graded Materials (FGM) provides variation in properties and better functional performance within a component. Sequential casting is fairly a new technique to produce functionally graded materials and components by controlled mould filling process. Bimetallics of aluminium alloys are prepared by sequential casting using A390-A319 alloy (cast-cast alloy) and A390-A6061 alloy (cast-wrought alloy) combination and solidified under gravity. The effect of temperature of the two melts and gap between pouring of the melts on microstructure and properties of the bimetals are investigated. The microstructures show good interface bonding between the two different alloy metals. The hardness testing shows higher hardness at hypereutectic alloy region. The process described in this study shows potential and effective approach to create good bonding between two different aluminium alloys to develop advanced functional and structural materials which can be used in various automobile components to reduce the overall weight of the vehicle, by which better fuel efficiency and performance can be achieved.


2011 ◽  
Vol 217-218 ◽  
pp. 1319-1323
Author(s):  
Yao Dai ◽  
Jun Feng Liu ◽  
Peng Zhang

For homogeneous material plates and non-homogeneous material plates, the crack-tip field plays an important role in the research of fracture mechanics. However, the governing equations become the system of the sixth order partial differential ones with the variable coefficients when the material gradient is perpendicular to the thickness direction of plates. In this paper, they are derived first. Then, the crack-tip fields of the plates of radial functionally graded materials (FGMs) are studied and the higher order crack-tip fields are obtained based on the Reissner’s plate theory. The results show the effect of the non-homogeneity on the crack-tip fields explicitly and become the same as solutions of the homogeneous material plates as the non-homogeneous parameter approaches zero.


Sign in / Sign up

Export Citation Format

Share Document