The Crack-Tip Fields of Reissner’s Plates of Radial Functionally Graded Materials

2011 ◽  
Vol 217-218 ◽  
pp. 1319-1323
Author(s):  
Yao Dai ◽  
Jun Feng Liu ◽  
Peng Zhang

For homogeneous material plates and non-homogeneous material plates, the crack-tip field plays an important role in the research of fracture mechanics. However, the governing equations become the system of the sixth order partial differential ones with the variable coefficients when the material gradient is perpendicular to the thickness direction of plates. In this paper, they are derived first. Then, the crack-tip fields of the plates of radial functionally graded materials (FGMs) are studied and the higher order crack-tip fields are obtained based on the Reissner’s plate theory. The results show the effect of the non-homogeneity on the crack-tip fields explicitly and become the same as solutions of the homogeneous material plates as the non-homogeneous parameter approaches zero.

2013 ◽  
Vol 748 ◽  
pp. 341-344
Author(s):  
Yao Dai ◽  
Zhang Lei ◽  
Xiao Chong

The crack tip fields for a cracked functionally graded materials spherical shell considering Reissners effect are obtained. Similar to Williams solution for homogeneous material, the eigen-solution of the crack tip field for bi-directional FGMs spherical shell is obtained by stress superposition principle. This result can be used to deal with the crack problems for FGMs shell.


1999 ◽  
Vol 66 (1) ◽  
pp. 101-108 ◽  
Author(s):  
P. Gu ◽  
M. Dao ◽  
R. J. Asaro

A finite element based method is proposed for calculating stress intensity factors of functionally graded materials (FGMs). We show that the standard domain integral is sufficiently accurate when applied to FGMs; the nonhomogeneous term in the domain integral for nonhomogeneous materials is very small compared to the first term (the standard domain integral). In order to obtain it, the domain integral is evaluated around the crack tip using sufficiently fine mesh. We have estimated the error in neglecting the second term in terms of the radius of the domain for the domain integration, the material properties and their gradients. The advantage of the proposed method is that, besides its accuracy, it does not require the input of material gradients, derivatives of material properties; and existing finite element codes can be used for FGMs without much additional work. The numerical examples show that it is accurate and efficient. Also, a discussion on the fracture of the FGM interlayer structure is given.


2011 ◽  
Vol 217-218 ◽  
pp. 1309-1313
Author(s):  
Yao Dai ◽  
Shi Min Li ◽  
Peng Zhang ◽  
Xiao Chong

An arbitrarily oriented anti-plane crack with its tip at the physical weak-discontinuous line of the structure which is made up of homogeneous material and functionally graded materials (FGMs) is studied. The analytic solution of the higher order crack tip fields (similar to the Williams’ solution of homogenous material) is obtained by applying the asymptotic series expansion. When non-homogeneous material parameters are degenerated, the solutions become the same as the asymptotic crack tip fields of the homogeneous material. Therefore, the solutions are the basic results of non-homogeneous fracture mechanics, and provide a theoretical basis for solving the fracture problems of one common structure with physical weak-discontinuity.


2012 ◽  
Vol 531 ◽  
pp. 593-596
Author(s):  
Shuang Bao Li ◽  
Yu Xin Hao

Chaotic motion of a simply supported functionally graded materials (FGM) square thin plate under one-to-two internal resonance is studied in this paper. The FGM plate is subjected to the transversal and in-plane excitations. Material properties are assumed to be temperature-dependent and change continuously throughout the thickness of the plate. The temperature variation is assumed to occur in the thickness direction only and satisfy the steady-state heat transfer equation. Based on the Reddy’s third-order plate theory and Hamilton’s principle, the nonlinear governing equations of motion for the FGM plate are derived by using the Galerkin’s method to describe the transverse oscillation in the first two modes Numerical simulations illustrate that there exist chaotic motion for the FGM rectangular plate.


2019 ◽  
Vol 9 (17) ◽  
pp. 3581 ◽  
Author(s):  
Jin-Rae Cho

This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened and improved by the stress recovery. The modified interaction integral M ˜ ( 1 , 2 ) was employed to evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed method was validated through the representative numerical examples and the effectiveness was justified by comparing the numerical results with the reference solutions.


Author(s):  
Yu-xin Hao ◽  
Wei Zhang ◽  
Jian-hua Wang

An analysis on nonlinear dynamic of a cantilevered functionally graded materials (FGM) plate which subjected to the transverse excitation in the uniform thermal environment is presented for the first time. Materials properties of the constituents are graded in the thickness direction according to a power-law distribution and assumed to be temperature dependent. In the framework of the Third-order shear deformation plate theory, the nonlinear governing equations of motion for the functionally graded materials plate are derived by using the Hamilton’s principle. For cantilever rectangular plate, the first two vibration mode shapes that satisfy the boundary conditions is given. The Galerkin’s method is utilized to discretize the governing equations of motion to a two-degree-of-freedom nonlinear system under combined thermal and external excitations. By using the numerical method, the two-degree-of-freedom nonlinear system is analyzed to find the nonlinear responses of the cantilever FGMs plate. The influences of the thermal environments on the nonlinear dynamic response of the cantilevered FGM plate are discussed in detail through a parametric study.


Sign in / Sign up

Export Citation Format

Share Document