Mixed-mode crack-tip stress fields for orthotropic functionally graded materials

2008 ◽  
Vol 204 (1-2) ◽  
pp. 51-60 ◽  
Author(s):  
Vijaya Bhaskar Chalivendra
2005 ◽  
Vol 492-493 ◽  
pp. 409-414 ◽  
Author(s):  
Jeong Ho Kim ◽  
Glaucio H. Paulino

This paper presents numerical simulation of mixed-mode crack propagation in functionally graded materials by means of a remeshing algorithm in conjunction with the finite element method. Each step of crack growth simulation consists of the calculation of the mixedmode stress intensity factors by means of a non-equilibrium formulation of the interaction integral method, determination of the crack growth direction based on a specific fracture criterion, and local automatic remeshing along the crack path. A specific fracture criterion is tailored for FGMs based on the assumption of local homogenization of asymptotic crack-tip fields in FGMs. The present approach uses a user-defined crack increment at the beginning of the simulation. Crack trajectories obtained by the present numerical simulation are compared with available experimental results.


2007 ◽  
Vol 345-346 ◽  
pp. 481-484
Author(s):  
Kwang Ho Lee ◽  
Gap Su Ban

Stress and displacement fields for a transient crack tip propagating along gradient in functionally graded materials (FGMs) with an exponential variation of shear modulus and density under a constant Poisson's ratio are developed. The equations of transient motion in nonhomogeneous materials are developed using displacement potentials and the solution to the displacement fields and the stress fields for a transient crack propagating at nonuniform speed though an asymptotic analysis.


2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Linhui Zhang ◽  
Jeong-Ho Kim

This paper provides asymptotic full crack-tip stress field solutions for an in-plane mixed-mode stationary crack in an anisotropic functionally graded material. A monoclinic graded material that has a material symmetry plane is considered. The complex variable approach and the asymptotic scaling factor are used to solve the governing fourth-order partial differential equation for exponentially graded anisotropic materials with gradation either parallel or perpendicular to the crack. Full crack-tip stress fields under mode-I and mode-II loading are visualized and discussed for homogeneous and exponentially graded anisotropic materials. We observe that higher-order terms are affected by material gradation and play an important role on crack-tip stress fields in functionally graded materials.


Sign in / Sign up

Export Citation Format

Share Document