Cholesterol Biosynthesis and Regulation: Role of Peroxisomes

Author(s):  
Werner J. Kovacs ◽  
Skaidrite Krisans
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachna Manek ◽  
Yao V. Zhang ◽  
Patricia Berthelette ◽  
Mahmud Hossain ◽  
Cathleen S. Cornell ◽  
...  

AbstractPhenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1363 ◽  
Author(s):  
Hyeji Kang ◽  
Taerim Oh ◽  
Young Yil Bahk ◽  
Geon-Hee Kim ◽  
Sang-Yeon Kan ◽  
...  

Heat shock factor 1 (HSF1) is an essential transcription factor in cellular adaptation to various stresses such as heat, proteotoxic stress, metabolic stress, reactive oxygen species, and heavy metals. HSF1 promotes cancer development and progression, and increased HSF1 levels are frequently observed in multiple types of cancers. Increased activity in the mevalonate and cholesterol biosynthesis pathways, which are very important for cancer growth and progression, is observed in various cancers. However, the functional role of HSF1 in the mevalonate and cholesterol biosynthesis pathways has not yet been investigated. Here, we demonstrated that the activation of RAS-MAPK signaling through the overexpression of H-RasV12 increased HSF1 expression and the cholesterol biosynthesis pathway. In addition, the activation of HSF1 was also found to increase cholesterol biosynthesis. Inversely, the suppression of HSF1 by the pharmacological inhibitor KRIBB11 and short-hairpin RNA (shRNA) reversed H-RasV12-induced cholesterol biosynthesis. From the standpoint of therapeutic applications for hepatocellular carcinoma (HCC) treatment, HSF1 inhibition was shown to sensitize the antiproliferative effects of simvastatin in HCC cells. Overall, our findings demonstrate that HSF1 is a potential target for statin-based HCC treatment.


1996 ◽  
Vol 271 (5) ◽  
pp. 2634-2640 ◽  
Author(s):  
James E. Metherall ◽  
Huijuan Li ◽  
Kathleen Waugh

1975 ◽  
Vol 145 (2) ◽  
pp. 345-352
Author(s):  
K Alexander ◽  
M Akhtar

If the biological conversion of cholest-7-en-3beta-ol (I) into cholesterol (IV) occurred thorugh the intermediacy of cholest-7-ene-3beta,5alpha-diol (II) then the factor(s) adversely affecting the convwesion of the 5alpha-hydroxy sterol (II) into cholesterol must at least equally adversely affect the formation of cholesterol from cholest-7-en-3beta-ol. By using partial denaturation techniquws and dual-labelled precursors it was shown that the enzyme system responsible for the conversion of the 5alpha-hydroxy sterol (II) into cholesterol denatured faster than that for the corresponding conversion from cholest-7-en-3beta-ol (I).


Life Sciences ◽  
1970 ◽  
Vol 9 (21) ◽  
pp. 1201-1205 ◽  
Author(s):  
A. Fiecchi ◽  
A. Scala ◽  
F. Cattabeni ◽  
E. Grossi Paoletti

1964 ◽  
Vol 239 (5) ◽  
pp. 1381-1387 ◽  
Author(s):  
Mary E. Dempsey ◽  
Jennie D. Seaton ◽  
George J. Schroepfer ◽  
Rachel W. Trockman

2021 ◽  
Author(s):  
Sherida de Leeuw ◽  
Aron WT Kirschner ◽  
Karina Lindner ◽  
Ruslan Rust ◽  
Witold E Wolski ◽  
...  

Apolipoprotein E (APOE) is the principal lipid carrier in the CNS and mainly expressed by astrocytes. The three different APOE alleles (E2, E3, and E4) impose differential risk to Alzheimers disease (AD); E2 is protective, E3 is defined as average risk, while E4 is the major genetic risk factor for sporadic AD. Despite recent advances, the fundamental role of different APOE alleles in brain homeostasis is still poorly understood. To uncover the functional role of APOE in human astrocytes, we differentiated human APOE-isogenic iPSCs (E4, E3, E2 and APOE-knockout (KO)) to functional astrocytes (hereafter: iAstrocytes), with a resting, non-proliferating phenotype. Functional assays indicated that polymorphisms in APOE (APOE4>E3>E2=KO) reduced iAstrocyte metabolic and clearance functions including glutamate uptake and receptor-mediated uptake of β-amyloid aggregates. We performed unlabelled mass spectrometry-based proteomic analysis of iAstrocytes at baseline and after activation with interleukin-1β showing a reduction of cholesterol and lipid metabolic and biosynthetic pathways, and an increase of immunoregulatory pathways at baseline (E4>E3>E2). Cholesterol efflux and biosynthesis were reduced in E4 iAstrocytes, and subcellular localization of cholesterol in lysosomes was increased. In APOE-KO iAstrocytes, APOE-independent mechanisms showed to be proficient in mediating cholesterol biosynthesis and efflux. Proteomic analysis of IL-1β-treated iAstrocytes showed an increase of cholesterol/lipid metabolism and biosynthesis as well as inflammatory pathways. Furthermore, cholesterol efflux, which was reduced in APOE4 iAstrocytes at baseline, was alleviated in activated E4 iAstrocytes. Inflammatory cytokine release was exacerbated upon IL-1β treatment in E4 iAstrocytes (E4>E3>E2>KO), in line with the proteomic data. Taken together, we show that APOE plays a major role in several physiological and metabolic processes in human astrocytes with APOE4 pushing iAstrocytes to a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signalling and reduced β-amyloid uptake while APOE2 iAstrocytes show opposing effects. Our study provides a new reference for AD-relevant proteomic and metabolic changes, mediated by the three main APOE isoforms in human astrocytes.


1958 ◽  
Vol 37 (5) ◽  
pp. 655-659 ◽  
Author(s):  
Maxwell L. Eidinoff ◽  
Joseph E. Knoll ◽  
Benjamin J. Marano ◽  
Elling Kvamme ◽  
Robert S. Rosenfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document