Toll-Like Receptor Agonists as Antecedent Therapy for Ischemic Brain Injury: Advancing Preclinical Studies to the Nonhuman Primate

2012 ◽  
pp. 205-230
Author(s):  
Frances Rena Bahjat ◽  
Keri B. Vartanian ◽  
G. Alexander West ◽  
Mary P. Stenzel-Poore
2020 ◽  
Author(s):  
Kazuha Mitsui ◽  
Masakazu Kotoda ◽  
Sohei Hishiyama ◽  
Ayasa Takamino ◽  
Sho Morikawa ◽  
...  

Abstract BackgroundIschemic stroke is one of the leading causes of mortality and morbidity worldwide. Accumulated evidence suggests that the consequent excessive inflammation plays detrimental roles in the pathogenesis of secondary injury after cerebral infarction and exacerbates the brain tissue damage. Although regulation of the inflammation would be the potential strategy for the novel treatment option, effective methods that control the cerebral inflammation have not yet been established. Recent studies have suggested that propofol, a sedative agent widely used for management of patients with acute stroke, suppresses excessive inflammation and may have neuroprotective effects against ischemic brain injury. However, the available evidence is still limited and controversial, and the underlying mechanism remains unclear. This study aimed to investigate the neuroprotective effects of propofol against ischemic brain injury, with a specific focus on Toll-like receptor 4 (TLR4), the critical mediator of inflammation in the ischemic brain.ResultsTreatment with propofol significantly reduced infarct volume in wild-type mice (7.9 ± 1.4 vs. 12.6 ± 1.1 mm3, n = 10 each, p < 0.05). The propofol-treated mice exhibited lower levels of pro-inflammatory cytokine expressions compared with the control mice (IL-6: 0.57 ± 0.23 vs. 1.00 ± 0.39, p < 0.05, IL-1β: 0.53 ± 0.24 vs. 1.00 ± 0.36, p = 0.087, n = 15 each). The neuroprotective effect of propofol was abrogated by TLR4 gene knockout. Propofol treatment had no significant effects on hemodynamic parameters.ConclusionsPropofol attenuates brain injury by blocking the TLR4-dependent pathway and suppressing pro-inflammatory cytokine production. This insight into the mechanism underlying the neuroprotective effect of propofol against ischemic brain injury may lead to a new strategy for preventing exacerbation of cerebral infarction.


2008 ◽  
Vol 28 (5) ◽  
pp. 1040-1047 ◽  
Author(s):  
Susan L Stevens ◽  
Thomas MP Ciesielski ◽  
Brenda J Marsh ◽  
Tao Yang ◽  
Delfina S Homen ◽  
...  

Preconditioning with lipopolysaccharide (LPS), a toll-like receptor 4 (TLR4) ligand, provides neuroprotection against subsequent cerebral ischemic brain injury, through a tumor necrosis factor (TNF)α-dependent process. Here, we report the first evidence that another TLR, TLR9, can induce neuroprotection. We show that the TLR9 ligand CpG oligodeoxynucleotide (ODN) can serve as a potent preconditioning stimulus and provide protection against ischemic brain injury. Our studies show that systemic administration of CpG ODN 1826 in advance of brain ischemia (middle cerebral artery occlusion (MCAO)) reduces ischemic damage up to 60% in a dose- and time-dependent manner. We also offer evidence that CpG ODN preconditioning can provide direct protection to cells of the central nervous system, as we have found marked neuroprotection in modeled ischemia in vitro. Finally, we show that CpG preconditioning significantly increases serum TNFα levels before MCAO and that TNFα is required for subsequent reduction in damage, as mice lacking TNFα are not protected against ischemic injury by CpG preconditioning. Our studies show that preconditioning with a TLR9 ligand induces neuroprotection against ischemic injury through a mechanism that shares common elements with LPS preconditioning via TLR4.


2016 ◽  
Vol 16 (9) ◽  
pp. 729-737 ◽  
Author(s):  
Diana Amantea ◽  
Rossella Russo ◽  
Michelangelo Certo ◽  
Laura Rombolà ◽  
Annagrazia Adornetto ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6593
Author(s):  
Kenta H.T. Cho ◽  
Mhoyra Fraser ◽  
Bing Xu ◽  
Justin M. Dean ◽  
Alistair J. Gunn ◽  
...  

Background: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic–ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. Methods: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. Results: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). Conclusion: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.


Sign in / Sign up

Export Citation Format

Share Document