Optimization of substructure dynamic interface forces by an energetic approach

Author(s):  
T. Weisser ◽  
L. O. Gonidou ◽  
E. Foltête ◽  
N. Bouhaddi
2005 ◽  
Vol 126 ◽  
pp. 147-150 ◽  
Author(s):  
C. Barthod ◽  
G. Gautier ◽  
Y. Teisseyre ◽  
A. Agbossou

1984 ◽  
Author(s):  
S. L. Madey ◽  
J. C. Petz
Keyword(s):  

2020 ◽  
Author(s):  
Lucian Popescu ◽  
Nelu-Mihai Trofenciuc ◽  
Simina Crisan ◽  
Aurora Diana Bordejevic ◽  
Alexandru Mischie ◽  
...  

BACKGROUND A systematic and quantitative comparative analysis for this subject has not been done so far. Thus defined, the coefficient of elasticity is a whole new dimension. OBJECTIVE This study proposes a new mathematical myocardium elasticity property modeling in characterizing of the ventricular diastole and systole. METHODS The study group consisted of 2283 consecutive patients evaluated by echocardiography. The mathematical approach is made starting from energetic consideration, by applying the energy conservation low for the blood entering from left atrium into left ventricle during diastole period. RESULTS Analyzing all the data obtained we developed two brand new coefficients to describe the cardiac cycle and we had verified if the coefficients are correlated with classically used parameters. We consider that the energetic approach take into consideration the whole mechanical movement that is happening inside the heart and can offer a very synthetic and scientific solid view about the cardiac cycle. CONCLUSIONS The new coefficients are simply to be calculated and as you will see from our research the correlation with other classically used parameters is obvious. The direct physical approach of blood flow within the heart can generate new, beneficial perspectives in diagnosing various heart conditions, or even in understanding how works the filling of the ventricles and atria during a heartbeat.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Wei ◽  
Jessica L. Faubel ◽  
Hemaa Selvakumar ◽  
Daniel T. Kovari ◽  
Joanna Tsao ◽  
...  

AbstractTailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns – two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.


2014 ◽  
Vol 30 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Yael Elbaz-Alon ◽  
Eden Rosenfeld-Gur ◽  
Vera Shinder ◽  
Anthony H. Futerman ◽  
Tamar Geiger ◽  
...  
Keyword(s):  

Author(s):  
William F Sherman ◽  
Mira Asad ◽  
Anna Grosberg

Abstract Through a variety of mechanisms, a healthy heart is able to regulate its structure and dynamics across multiple length scales. Disruption of these mechanisms can have a cascad- ing effect, resulting in severe structural and/or functional changes that permeate across different length scales. Due to this hierarchical structure, there is interest in understand- ing how the components at the various scales coordinate and influence each other. However, much is unknown regarding how myofibril bundles are organized within a densely packed cell and the influence of the subcellular components on the architecture that is formed. To elucidate potential factors influencing cytoskeletal development, we proposed a compu- tational model that integrated interactions at both the cel- lular and subcelluar scale to predict the location of indi- vidual myofibril bundles that contributed to the formation of an energetically favorable cytoskeletal network. Our model was tested and validated using experimental metrics derived from analyzing single cell cardiomyocytes. We demonstrated that our model-generated networks were capable of repro- ducing the variation observed in experimental cells at different length scales as a result of the stochasticity inher- ent in the different interaction between the various cellu- lar components. Additionally, we showed that incorporat- ing length-scale parameters resulted in physical constraints that directed cytoskeletal architecture towards a structurally consistent motif. Understanding the mechanisms guiding the formation and organization of the cytoskeleton in individual cardiomyocytes can aid tissue engineers towards developing functional cardiac tissue.


Sign in / Sign up

Export Citation Format

Share Document