Modelling the Occupant Behaviour Impact on Buildings Energy Prediction

Author(s):  
João Virote ◽  
Rui Neves-Silva
2016 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Abdelilah Kahaji ◽  
Rachid Alaoui ◽  
Sadik Farhat ◽  
Lahoussine Bouhouch

2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


2018 ◽  
Vol 06 (06) ◽  
pp. 110-115
Author(s):  
Panchami Anil ◽  
Anas P V ◽  
Naseef Kuruvakkottil ◽  
Anusha K V ◽  
Balagopal N

2021 ◽  
Vol 11 (2) ◽  
pp. 527-534
Author(s):  
Anton Driesse ◽  
Marios Theristis ◽  
Joshua S. Stein

Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 678-683
Author(s):  
Shailendra Pawanr ◽  
Girish Kant Garg ◽  
Srikanta Routroy

2021 ◽  
pp. 102630
Author(s):  
Himanshu Patel Tuniki ◽  
Andrius Jurelionis ◽  
Paris Fokaides
Keyword(s):  

2019 ◽  
Vol 111 ◽  
pp. 04056
Author(s):  
Loes Visser ◽  
Boris Kingma ◽  
Eric Willems ◽  
Wendy Broers ◽  
Marcel Loomans ◽  
...  

Studies indicate that the energy performance gap between real and calculated energy use can be explained for 80% by occupant behaviour. This human factor may be composed of routine and thermoregulatory behaviour. When occupants do not feel comfortable due to high or low operative temperatures and resulting high or low skin temperatures, they are likely to exhibit thermoregulatory behaviour. The aim of this study is to monitor and understand this thermoregulatory behaviour of the occupant. This is a detailed study of two females living in a rowhouse in the city of Heerlen (Netherlands). During a monitoring period of three weeks over a time span of three months the following parameters were monitored: activity level, clothing, micro climate, skin temperatures and thermal comfort and sensation. Their micro climate was measured at five positions on the body to assess exposed near body conditions and skin temperature. Every two hours they filled in a questionnaire regarding their thermal comfort and sensation level (7-point scale), clothing, activities and thermoregulatory behaviour. The most comfortable (optimal) temperature was calculated for each person by adopting a biophysical model, a thermoneutral zone model. This study shows unique indivual comfort patterns in relation to ambient conditions. An example is given how this information can be used to calculate the buildings energy comsumption.


Sign in / Sign up

Export Citation Format

Share Document