scholarly journals Occupant behaviour and thermal comfort in buildings: Monitoring the end user

2019 ◽  
Vol 111 ◽  
pp. 04056
Author(s):  
Loes Visser ◽  
Boris Kingma ◽  
Eric Willems ◽  
Wendy Broers ◽  
Marcel Loomans ◽  
...  

Studies indicate that the energy performance gap between real and calculated energy use can be explained for 80% by occupant behaviour. This human factor may be composed of routine and thermoregulatory behaviour. When occupants do not feel comfortable due to high or low operative temperatures and resulting high or low skin temperatures, they are likely to exhibit thermoregulatory behaviour. The aim of this study is to monitor and understand this thermoregulatory behaviour of the occupant. This is a detailed study of two females living in a rowhouse in the city of Heerlen (Netherlands). During a monitoring period of three weeks over a time span of three months the following parameters were monitored: activity level, clothing, micro climate, skin temperatures and thermal comfort and sensation. Their micro climate was measured at five positions on the body to assess exposed near body conditions and skin temperature. Every two hours they filled in a questionnaire regarding their thermal comfort and sensation level (7-point scale), clothing, activities and thermoregulatory behaviour. The most comfortable (optimal) temperature was calculated for each person by adopting a biophysical model, a thermoneutral zone model. This study shows unique indivual comfort patterns in relation to ambient conditions. An example is given how this information can be used to calculate the buildings energy comsumption.

Author(s):  
Farah Mneimneh ◽  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Charbel Moussalem ◽  
Ibrahim Omeis

Abstract Phase change material (PCM) cooling vests were tested on people with thoracic (T1-T12) spinal cord injury (SCI), also called people with paraplegia (PA), during exercise in heat. The purpose was to reduce heat stress, limit the increase in core temperature, and improve thermal comfort for PA under high metabolic rates and hot ambient conditions. This health risk was a result of thoracic SCI and disruption of thermoregulatory responses in PA. The current study aims to evaluate the efficacy of cooling vest on PA during arm-crank exercise at two melting points, 20°C (V20) and 14°C (V14) compared to no vest test (NV). Eleven participants with high- (T1-T3) and mid-thoracic SCI (T4-T8) were selected to participate in three tests. Core and skin temperatures and heart rate values were measured during 15-min precondition, 30-min exercise and 15-min recovery. Subjective voting of thermal comfort, sensation, skin wettedness and perceived exertion were recorded during exercise only. The main findings revealed significant reduction in change in core temperature (0.42±0.3°C;0.38±0.2°C) in V20 and V14 compared to NV tests for mid-thoracic group. For high-thoracic group, V20 and V14 were least effective in reducing core temperature (p > 0.05). Improvements in thermal comfort was established when using V14 and V20 compared to NV by 85% and 30% for high-thoracic group and by 72% and 53% for mid-thoracic group.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 696
Author(s):  
Eun Ji Choi ◽  
Jin Woo Moon ◽  
Ji-hoon Han ◽  
Yongseok Yoo

The type of occupant activities is a significantly important factor to determine indoor thermal comfort; thus, an accurate method to estimate occupant activity needs to be developed. The purpose of this study was to develop a deep neural network (DNN) model for estimating the joint location of diverse human activities, which will be used to provide a comfortable thermal environment. The DNN model was trained with images to estimate 14 joints of a person performing 10 common indoor activities. The DNN contained numerous shortcut connections for efficient training and had two stages of sequential and parallel layers for accurate joint localization. Estimation accuracy was quantified using the mean squared error (MSE) for the estimated joints and the percentage of correct parts (PCP) for the body parts. The results show that the joint MSEs for the head and neck were lowest, and the PCP was highest for the torso. The PCP for individual activities ranged from 0.71 to 0.92, while typing and standing in a relaxed manner were the activities with the highest PCP. Estimation accuracy was higher for relatively still activities and lower for activities involving wide-ranging arm or leg motion. This study thus highlights the potential for the accurate estimation of occupant indoor activities by proposing a novel DNN model. This approach holds significant promise for finding the actual type of occupant activities and for use in target indoor applications related to thermal comfort in buildings.


2006 ◽  
Vol 4 (1) ◽  
pp. 25-35 ◽  
Author(s):  
JULIE MIDTGAARD ◽  
ANDERS TVETERÅS ◽  
MIKAEL RØRTH ◽  
REINHARD STELTER ◽  
LIS ADAMSEN

Background:Exercise is becoming an important component of cancer rehabilitation programs. A consistent finding across studies is that patients experience improved physical fitness and reduced fatigue. However, sustained physical activity is essential if the benefits are to be preserved over the course of cancer survivorship.Objective:This study examined self-reported short-term exercise adherence following a 6-week, supervised exercise program (muscle strength, cardiovascular fitness, relaxation, body awareness, and massage) in a heterogeneous group of 61 cancer patients (mean age 42.9 years, 82% oncological and 18% haematological) from the Body & Cancer Project.Methods:Semistructured interviews were used to quantitatively assess leisure time physical activity level 1 and 3 months after completion of the program. The study furthermore included 3-month follow-up assessment of psychological distress (Hospital Anxiety and Depression Scale—HADS). Patient statements were selected that best illustrated trends found in the statistical material.Results:There was a significant postprogram reduction in physical activity from 6 to 10 weeks and from 6 to 18 weeks. However, the patients (half of whom were still undergoing treatment at the time of follow-up) reported a higher physical activity level postprogram compared to their baseline levels. The analyses showed a positive association between the 3-month postprogram physical activity level and pre-illness physical activity level, treatment, and postprogram changes in depression.Significance of research:Given the significant decrease in postprogram PA level, especially in subjects still undergoing cancer treatment, the study suggests that continuous supervised programs may be required in order to encourage and support exercise adherence in this population. However, randomized clinical controlled trials and more follow-up studies are needed to establish the optimal program length and content for sustained exercise adherence in cancer patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Justyna Wyszyńska ◽  
Justyna Podgórska-Bednarz ◽  
Justyna Drzał-Grabiec ◽  
Maciej Rachwał ◽  
Joanna Baran ◽  
...  

Introduction. Excessive body mass in turn may contribute to the development of many health disorders including disorders of musculoskeletal system, which still develops intensively at that time.Aim. The aim of this study was to assess the relationship between children’s body mass composition and body posture. The relationship between physical activity level of children and the parameters characterizing their posture was also evaluated.Material and Methods. 120 school age children between 11 and 13 years were enrolled in the study, including 61 girls and 59 boys. Each study participant had the posture evaluated with the photogrammetric method using the projection moiré phenomenon. Moreover, body mass composition and the level of physical activity were evaluated.Results. Children with the lowest content of muscle tissue showed the highest difference in the height of the inferior angles of the scapulas in the coronal plane. Children with excessive body fat had less slope of the thoracic-lumbar spine, greater difference in the depth of the inferior angles of the scapula, and greater angle of the shoulder line. The individuals with higher level of physical activity have a smaller angle of body inclination.Conclusion. The content of muscle tissue, adipose tissue, and physical activity level determines the variability of the parameter characterizing the body posture.


2019 ◽  
Vol 103 ◽  
pp. 02001 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

This paper illustrates the impact of embedding an insulation layer of variable thermal conductivity in a typical building wall on the cooling effect and energy performance. The evaluation was performed by applying a conjugate heat transfer model, which was tested in extremely hot conditions of Al Ain (UAE). The thermal performance of a building incorporating insulation layers of variable thermal conductivity (k-value) was compared to a non-variable thermal conductivity system by quantifying the additional heat transferred due to the k-relationship with time. The results show that, when the k-value is a function of operating temperature, its effects on the temperature profile through the wall assembly during daytime is significant compared with that obtained when a constant k-value for the polystyrene (EPS) insulation is adopted. A similar trend in the evolution of temperatures during the day and across the wall section was observed when EPS material with different moisture content was evaluated. For the polyurethane insulation, the inner surface temperature reached 44 °C when constant k-value was adopted, increasing to 48.5 °C when the k-value was allowed to vary under the same ambient conditions.


2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Erna Meutia ◽  
Laina Hilma Sari

The Gayo Highland is one of the districts in Aceh Province, Sumatra. Due to the topography, this area has a lower  temperature compared than the flat and coastal areas in Aceh. The thermal comfort that is felt is based on a person's mental condition and how he expresses his satisfaction with his thermal environment. In other words, it shows how humans adapt to their thermal environment. Thermal comfort based on human adaptation is known as adaptive thermal comfort. The form of dwelling for the Gayo Highland community has shifted and changed from traditional dwelling to Transitional and Modern forms that influence the Gayo Highland community's adaptation to achieve thermal comfort. Therefore, this paper aims to investigate the house design in Gayo highland in providing warmth to the occupants naturally in the cold environment. Another aim of this study is to investigate the people's habits in warming up the body to deal with the low air temperature in the area.  This study shows how the local people adapt themselves through the house element and daily habit to gain the internal thermal comfort.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 619
Author(s):  
Jinsong Liu ◽  
Isak Worre Foged ◽  
Thomas B. Moeslund

Satisfactory indoor thermal environments can improve working efficiencies of office staff. To build such satisfactory indoor microclimates, individual thermal comfort assessment is important, for which personal clothing insulation rate (Icl) and metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes a vision-based method. Specifically, a human tracking-by-detection framework is implemented to acquire each person’s clothing status (short-sleeved, long-sleeved), key posture (sitting, standing), and bounding box information simultaneously. The clothing status together with a key body points detector locate the person’s skin region and clothes region, allowing the measurement of skin temperature (Ts) and clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The key posture and the bounding box change across time can category the person’s activity intensity into a corresponding level, from which the M value is estimated. Moreover, we have collected a multi-person thermal dataset to evaluate the method. The tracking-by-detection framework achieves a mAP50 (Mean Average Precision) rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The M estimation module obtains a classification rate of 95.6% in categorizing activity level. All of these prove the usefulness of the proposed method in a multi-person scenario of real-life applications.


Sign in / Sign up

Export Citation Format

Share Document