Power Counting Theorem in Euclidean Space

Author(s):  
Norma Terrin ◽  
Murad S. Taqqu
2008 ◽  
Vol 23 (10) ◽  
pp. 711-720 ◽  
Author(s):  
D. M. GHILENCEA

It is shown that a 4D N = 1 softly broken supersymmetric theory with higher derivative operators in the Kahler or the superpotential part of the Lagrangian and with an otherwise arbitrary superpotential, can be re-formulated as a theory without higher derivatives but with additional (ghost) superfields and modified interactions. The importance of the analytical continuation Minkowski–Euclidean space–time for the UV behaviour of such theories is discussed in detail. In particular it is shown that power counting for divergences in Minkowski space–time does not always work in models with higher dimensional (derivative) operators.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter returns to the problems which were formulated in Chapter 1, namely the Weinstein conjecture, the nonsqueezing theorem, and symplectic rigidity. These questions are all related to the existence and properties of symplectic capacities. The chapter begins by discussing some of the consequences which follow from the existence of capacities. In particular, it establishes symplectic rigidity and discusses the relation between capacities and the Hofer metric on the group of Hamiltonian symplectomorphisms. The chapter then introduces the Hofer–Zehnder capacity, and shows that its existence gives rise to a proof of the Weinstein conjecture for hypersurfaces of Euclidean space. The last section contains a proof that the Hofer–Zehnder capacity satisfies the required axioms. This proof translates the Hofer–Zehnder variational argument into the setting of (finite-dimensional) generating functions.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2020 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Silvestru Sever Dragomir

AbstractIn this paper, by the use of the divergence theorem, we establish some integral inequalities of Hermite–Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space {\mathbb{R}^{n}} for any {n\geq 2}.


Sign in / Sign up

Export Citation Format

Share Document