Large Scale Degrees and the Number of Spanning Clusters for the Uniform Spanning Tree

Author(s):  
Itai Benjamini
2019 ◽  
Vol 491 (2) ◽  
pp. 1709-1726 ◽  
Author(s):  
Krishna Naidoo ◽  
Lorne Whiteway ◽  
Elena Massara ◽  
Davide Gualdi ◽  
Ofer Lahav ◽  
...  

ABSTRACT Cosmological studies of large-scale structure have relied on two-point statistics, not fully exploiting the rich structure of the cosmic web. In this paper we show how to capture some of this cosmic web information by using the minimum spanning tree (MST), for the first time using it to estimate cosmological parameters in simulations. Discrete tracers of dark matter such as galaxies, N-body particles or haloes are used as nodes to construct a unique graph, the MST, that traces skeletal structure. We study the dependence of the MST on cosmological parameters using haloes from a suite of COmoving Lagrangian Acceleration (COLA) simulations with a box size of $250\ h^{-1}\, {\rm Mpc}$, varying the amplitude of scalar fluctuations (As), matter density (Ωm), and neutrino mass (∑mν). The power spectrum P and bispectrum B are measured for wavenumbers between 0.125 and 0.5 $h\, {\rm Mpc}^{-1}$, while a corresponding lower cut of ∼12.6 $h^{-1}\, {\rm Mpc}$ is applied to the MST. The constraints from the individual methods are fairly similar but when combined we see improved 1σ constraints of $\sim 17{{\ \rm per\ cent}}$ ($\sim 12{{\ \rm per\ cent}}$) on Ωm and $\sim 12{{\ \rm per\ cent}}$ ($\sim 10{{\ \rm per\ cent}}$) on As with respect to P (P + B) thus showing the MST is providing additional information. The MST can be applied to current and future spectroscopic surveys (BOSS, DESI, Euclid, PSF, WFIRST, and 4MOST) in 3D and photometric surveys (DES and LSST) in tomographic shells to constrain parameters and/or test systematics.


2018 ◽  
Vol 173 (3-4) ◽  
pp. 502-545
Author(s):  
Jan Hladký ◽  
Asaf Nachmias ◽  
Tuan Tran

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ruo-Hai Di ◽  
Ye Li ◽  
Ting-Peng Li ◽  
Lian-Dong Wang ◽  
Peng Wang

Dynamic programming is difficult to apply to large-scale Bayesian network structure learning. In view of this, this article proposes a BN structure learning algorithm based on dynamic programming, which integrates improved MMPC (maximum-minimum parents and children) and MWST (maximum weight spanning tree). First, we use the maximum weight spanning tree to obtain the maximum number of parent nodes of the network node. Second, the MMPC algorithm is improved by the symmetric relationship to reduce false-positive nodes and obtain the set of candidate parent-child nodes. Finally, with the maximum number of parent nodes and the set of candidate parent nodes as constraints, we prune the parent graph of dynamic programming to reduce the number of scoring calculations and the complexity of the algorithm. Experiments have proved that when an appropriate significance level α is selected, the MMPCDP algorithm can greatly reduce the number of scoring calculations and running time while ensuring its accuracy.


2021 ◽  
Vol 49 (6) ◽  
Author(s):  
O. Angel ◽  
D. A. Croydon ◽  
S. Hernandez-Torres ◽  
D. Shiraishi

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3071
Author(s):  
Sonam Lata ◽  
Shabana Mehfuz ◽  
Shabana Urooj ◽  
Asmaa Ali ◽  
Nidal Nasser

Wireless sensor networks (WSNs) are becoming very common in numerous manufacturing industries; especially where it is difficult to connect a sensor to a sink. This is an evolving issue for researchers attempting to contribute to the proliferation of WSNs. Monitoring a WSN depends on the type of collective data the sensor nodes have acquired. It is necessary to quantify the performance of these networks with the help of network reliability measures to ensure the stable operation of WSNs. Reliability plays a key role in the efficacy of any large-scale application of WSNs. The communication reliability in a wireless sensor network is an influential parameter for enhancing network performance for secure, desirable, and successful communication. The reliability of WSNs must incorporate the design variables, coverage, lifetime, and connectivity into consideration; however, connectivity is the most important factor, especially in a harsh environment on a large scale. The proposed algorithm is a one-step approach, which starts with the recognition of a specific spanning tree only. It utilizes all other disjoint spanning trees, which are generated directly in a simple manner and consume less computation time and memory. A binary decision illustration is presented for the enumeration of K-coverage communication reliability. In this paper, the issue of computing minimum spanning trees was addressed and it is a pertinent method for further evaluating reliability for WSNs. This paper inspects the reliability of WSNs and proposes a method for evaluating the flow-oriented reliability of WSNs. Further, a modified approach for the sum-of-disjoint products to determine the reliability of WSN from the enumerated minimal spanning trees is proposed. The proposed algorithm when implemented for different sizes of WSNs demonstrates its applicability to WSNs of various scales. The proposed methodology is less complex and more efficient in terms of reliability.


Sign in / Sign up

Export Citation Format

Share Document