One-Dimensional Stress-Strain Analysis Software

1991 ◽  
pp. 53-110 ◽  
Author(s):  
W. F. Chen ◽  
H. Zhang
Author(s):  
Mykola M. Tkachuk

The paper describes the developed statistically averaged models of deformation of materials with a random network structure of differently oriented fibers. New methods of stress-strain analysis and micromacromechanical models of material deformation in the volume of bodies made of material with a network structure taking into account structural and physical nonlinearities have been created. These models are based on the micromechanics of network structures at the level of statistical sets of their chains. The novelty of approaches, models, methods and results is the creation of theoretical foundations for the analysis of the deformation of non-traditional network materials. Nonlinear mathematical models of material deformation in the form of a chaotic network structure of one-dimensional fragments are proposed, which are constructed involving fundamentally new approaches to the description of physical and mechanical properties at the micro level of statistical sets of fiber chains and spatial homogenization of their macroproperties. Compared to traditional models, they more adequately model the features of material deformation in the form of spatial chaotic and ordered network structures, as they do not involve a number of additional non-physical hypotheses. This creates fundamentally new opportunities not only for analyzing the properties of such materials, but also when creating new ones with specified properties. Using the created methods, models and research tools, the basis for solving a number of model and applied problems has been created. The nature of deformation of non-traditional materials with a network structure of one-dimensional elements is determined. The macro-properties of these materials are established on the basis of the developed micromechanical models, variational formulations and averaging methods. Keywords: stress-strain state, network structures, contact interaction, finite element method, contact pressure, machine parts, variational formulation


2011 ◽  
Vol 130-134 ◽  
pp. 139-142 ◽  
Author(s):  
Zhong Ying Zhua ◽  
Deng Yue Sun

The back-up roll with roll-sleeve was studied and simulated using the finite element analysis software Abaqus in this paper. The stress-strain field of back-up roll with different roll-sleeve thickness and different magnitude of interference were compared because these two parameters are of importance for us to guide the application of roll with sleeve.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 61-66 ◽  
Author(s):  
DOEUNG D. CHOI ◽  
SERGIY A. LAVRYKOV ◽  
BANDARU V. RAMARAO

Delamination between layers occurs during the creasing and subsequent folding of paperboard. Delamination is necessary to provide some stiffness properties, but excessive or uncontrolled delamination can weaken the fold, and therefore needs to be controlled. An understanding of the mechanics of delamination is predicated upon the availability of reliable and properly calibrated simulation tools to predict experimental observations. This paper describes a finite element simulation of paper mechanics applied to the scoring and folding of multi-ply carton board. Our goal was to provide an understanding of the mechanics of these operations and the proper models of elastic and plastic behavior of the material that enable us to simulate the deformation and delamination behavior. Our material model accounted for plasticity and sheet anisotropy in the in-plane and z-direction (ZD) dimensions. We used different ZD stress-strain curves during loading and unloading. Material parameters for in-plane deformation were obtained by fitting uniaxial stress-strain data to Ramberg-Osgood plasticity models and the ZD deformation was modeled using a modified power law. Two-dimensional strain fields resulting from loading board typical of a scoring operation were calculated. The strain field was symmetric in the initial stages, but increasing deformation led to asymmetry and heterogeneity. These regions were precursors to delamination and failure. Delamination of the layers occurred in regions of significant shear strain and resulted primarily from the development of large plastic strains. The model predictions were confirmed by experimental observation of the local strain fields using visual microscopy and linear image strain analysis. The finite element model predicted sheet delamination matching the patterns and effects that were observed in experiments.


2015 ◽  
Vol 9 (6) ◽  
pp. 583
Author(s):  
Dario German Buitrago ◽  
Luis Carlos Ruíz ◽  
Olga Lucia Ramos

Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Mahdi Kiani ◽  
Roger Walker ◽  
Saman Babaeidarabad

One of the most important components in the hydraulic fracturing is a type of positive-displacement-reciprocating-pumps known as a fracture pump. The fluid end module of the pump is prone to failure due to unconventional drilling impacts of the fracking. The basis of the fluid end module can be attributed to cross bores. Stress concentration locations appear at the bores intersections and as a result of cyclic pressures failures occur. Autofrettage is one of the common technologies to enhance the fatigue resistance of the fluid end module through imposing the compressive residual stresses. However, evaluating the stress–strain evolution during the autofrettage and approximating the residual stresses are vital factors. Fluid end module geometry is complex and there is no straightforward analytical solution for prediction of the residual stresses induced by autofrettage. Finite element analysis (FEA) can be applied to simulate the autofrettage and investigate the stress–strain evolution and residual stress fields. Therefore, a nonlinear kinematic hardening material model was developed and calibrated to simulate the autofrettage process on a typical commercial triplex fluid end module. Moreover, the results were compared to a linear kinematic hardening model and a 6–12% difference between two models was observed for compressive residual hoop stress at different cross bore corners. However, implementing nonlinear FEA for solving the complicated problems is computationally expensive and time-consuming. Thus, the comparison between nonlinear FEA and a proposed analytical formula based on the notch strain analysis for a cross bore was performed and the accuracy of the analytical model was evaluated.


2015 ◽  
Vol 1112 ◽  
pp. 57-61 ◽  
Author(s):  
Amalia Sholehah ◽  
Akhmad Herman Yuwono

In the present work, ZnO nanostructures were synthesized via wet chemistry method. The seeding solution was prepared from zinc nitrate tetrahydrate and hexamethylenetetramine. Prior to the heating process, the seeding solution was immersed in cold bath (0°C). XRD analysis had shown sharp peaks in diffractogram, indicating the high crystallinity of ZnO nanostructures. The crystallite size was determined using Scherrer equation and Williamson-Hall method. Other relevant parameters including stress, strain, and energy density were calculated using Williamson-Hall assuming UDM, UDSM, and UDEDM. The results had revealed that crystallite size calculated with Williamson-Hall method is more accurate than Scherrer equation.


Sign in / Sign up

Export Citation Format

Share Document