Endocrine Regulations of Protein Synthesis by the in Vitro Fat Body from Blaberus Discoidalis Cockroaches

Author(s):  
L. L. Keeley ◽  
S. Sowa ◽  
T. K. Hayes
1979 ◽  
Vol 35 (11) ◽  
pp. 1449-1451 ◽  
Author(s):  
R. Pau ◽  
L. Levenbook ◽  
A. C. Bauer

1974 ◽  
Vol 52 (2) ◽  
pp. 203-208 ◽  
Author(s):  
D. E. Bignell

Removal of the Frontal ganglion in young adult locusts results in growth arrest, disruption of food passage in the gut, reduced faecal out put, and a high mortality. The effects of the operation in young adults differ in degree from those observed in larvae.An in vitro incubation technique was used to make a quantitative estimate of protein synthesis in the fat body after frontal ganglion removal and starvation. A significant reduction of protein synthesis after frontal ganglion removal was observed.The results are discussed in relation to the role of the stomatogastric nervous system in controlling food passage in the gut and the release of neurohormone from the corpora cardiaca.


1976 ◽  
Vol 35 (02) ◽  
pp. 350-357 ◽  
Author(s):  
Hana Bessler ◽  
Galila Agam ◽  
Meir Djaldetti

SummaryA three-fold increase of protein synthesis by human platelets during in vitro phagocytosis of polystyrene latex particles was detected. During the first two hours of incubation, the percentage of phagocytizing platelets and the number of latex particles per platelet increased; by the end of the third hour, the first parameter remained stable, while the number of latex particles per cell had decreased.Vincristine (20 μg/ml of cell suspension) inhibited platelet protein synthesis. This effect was both time- and dose-dependent. The drug also caused a decrease in the number of phagocytizing cells, as well as in their phagocytotic activity.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


1976 ◽  
Vol 81 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. Radvila ◽  
R. Roost ◽  
H. Bürgi ◽  
H. Kohler ◽  
H. Studer

ABSTRACT Lithium and excess iodide inhibit the release of thyroid hormone from preformed stores. We thus tested the hypothesis that this was due to an inhibition of thyroglobulin breakdown. Rats were pre-treated with propylthiouracil (PTU) for 3 weeks in order to deplete their thyroids of thyroglobulin. While the PTU was continued, lithium chloride (0.25 mEq./100 g weight) or potassium iodide (3 mg per rat) were injected every 12 h for 3 days. Thereafter the thyroglobulin content in thyroid gland homogenates was measured. PTU pre-treatment lowered the thyroglobulin content from 4.21 to 0.22 mg/100 mg gland. Lithium caused a marked re-accumulation of thyroglobulin to 0.60 mg/100 mg within 3 days. While iodide alone had only a borderline effect, it markedly potentiated the action of lithium and a combination of the two drugs increased the thyroglobulin content to 1.04 mg/100 mg. Thyroxine was injected into similarly pre-treated animals to suppress secretion of thyrotrophic hormone. This markedly inhibited the proteolysis of thyroglobulin and 1.3 mg/100 mg gland accumulated after 3 days. Excess iodide, given in addition to thyroxine, decreased the amount of thyroglobulin accumulated to 0.75 mg/100 mg gland. To study whether this could be explained by an inhibitory action of iodide on thyroglobulin biosynthesis, thyroid glands from animals treated with excess iodide were incubated in vitro in the presence of 0.2 mm iodide for 3 h. Iodide decreased the incorporation of radioactive leucine into total thyroidal protein and into thyroglobulin by 25 and 35 % respectively. Iodide did not inhibit protein synthesis in the kidney, liver or muscle tissue. Thus, large doses of iodide selectively inhibit thyroglobulin biosynthesis.


1980 ◽  
Vol 255 (10) ◽  
pp. 4583-4588 ◽  
Author(s):  
T. Samuelsson ◽  
P. Elias ◽  
F. Lustig ◽  
T. Axberg ◽  
G. Fölsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document