Critical Exponents from the Multifragmentation of 1A Gev Au Nuclei

1996 ◽  
pp. 41-49
Author(s):  
N. T. Porile ◽  
S. Albergo ◽  
F. Bieser ◽  
F. P. Brady ◽  
Z. Caccia ◽  
...  
Keyword(s):  
1987 ◽  
Vol 48 (4) ◽  
pp. 553-558 ◽  
Author(s):  
B. Bonnier ◽  
Y. Leroyer ◽  
C. Meyers

2021 ◽  
Vol 817 ◽  
pp. 136331
Author(s):  
Mikhail Kompaniets ◽  
Andrey Pikelner

2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Ryosuke Yoneda ◽  
Kenji Harada ◽  
Yoshiyuki Y. Yamaguchi

2021 ◽  
Vol 287 ◽  
pp. 329-375
Author(s):  
Fashun Gao ◽  
Haidong Liu ◽  
Vitaly Moroz ◽  
Minbo Yang

2015 ◽  
Vol 92 (11) ◽  
Author(s):  
Björn Sbierski ◽  
Emil J. Bergholtz ◽  
Piet W. Brouwer

Sign in / Sign up

Export Citation Format

Share Document