Toward Sensing, Communications and Control Architectures for Frequency Regulation in Systems with Highly Variable Resources

Author(s):  
Marija D. Ilić ◽  
Qixing Liu
2020 ◽  
Vol 11 (5) ◽  
pp. 4176-4189 ◽  
Author(s):  
Mingshen Wang ◽  
Yunfei Mu ◽  
Qingxin Shi ◽  
Hongjie Jia ◽  
Fangxing Li

Author(s):  
Suma Deepthi Veeraganti ◽  
Ramchandra Nittala

Microgrids are the most innovative area in the electric power industry today. A microgrid can operate in grid-connected or islanded mode. In islanded mode, microgrids can provide electricity to the rural areas with lower cost and minimum power losses. Several methods have been proposed in the literature for the successful operation of a microgrid. This chapter presents an overview of the major challenges and their possible solutions for planning, operation, and control of islanded operation of a microgrid. Microgrids are the most innovative area in the electric power industry today. Moreover, microgrids provide local voltage and frequency regulation support and improve reliability and power capacity of the grid. The most popular among the control strategies based on droop characteristics, in addition a central controller is described within a hierarchical control scheme to optimize the operation of the microgrid during interconnected operation. Microgrid control methods, including PQ control, droop control, voltage/frequency control, and current control methods are formulated.


2022 ◽  
pp. 111-126
Author(s):  
Suma Deepthi Veeraganti ◽  
Ramchandra Nittala

Microgrids are the most innovative area in the electric power industry today. A microgrid can operate in grid-connected or islanded mode. In islanded mode, microgrids can provide electricity to the rural areas with lower cost and minimum power losses. Several methods have been proposed in the literature for the successful operation of a microgrid. This chapter presents an overview of the major challenges and their possible solutions for planning, operation, and control of islanded operation of a microgrid. Microgrids are the most innovative area in the electric power industry today. Moreover, microgrids provide local voltage and frequency regulation support and improve reliability and power capacity of the grid. The most popular among the control strategies based on droop characteristics, in addition a central controller is described within a hierarchical control scheme to optimize the operation of the microgrid during interconnected operation. Microgrid control methods, including PQ control, droop control, voltage/frequency control, and current control methods are formulated.


2019 ◽  
Vol 9 (4) ◽  
pp. 727 ◽  
Author(s):  
Jingguo Rong ◽  
Xin Ai ◽  
Yunning Li ◽  
Dapeng Ren

Power electronic transformers (PETs), as the core devices of the energy internet, are the key to achieve both effective consumption for renewable energy and the safe and coordinated operation for AC/DC hybrid system. In order to overcome the shortcomings of the existing PETs, a novel PET with an improved structure that applicable for multi-voltage level AC/DC hybrid distribution network is proposed. The topology of the proposed PET is analyzed, and the corresponding control methods are suggested for different parts. The input stage utilizes the modular multilevel converter structure and applies the virtual synchronous machine control strategy to enhance the inertia and damping of the system. The power of the output stage is adjusted flexibly and that enables the PET to provide certain power support to the upper grid and participate in its primary frequency regulation. A combined connection of input-series output-series and input-series output-parallel is applied for the dual-active-bridge modules of the isolation stage to enable network interconnection and electrical isolation of AC/DC grids with significantly different voltage levels. A power coordinated control method is then proposed to meet the power demand of the distribution networks connected to the output stage and ensure stable operations of PET simultaneously. The reliability and efficiency of the proposed PET topology and control strategy for AC/DC hybrid distribution network are finally verified via PSCAD/EMTDC simulation.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 49 ◽  
Author(s):  
Lennart Petersen ◽  
Florin Iov ◽  
German Tarnowski

This paper proposes detailed and practical guidance on applying model-based design (MBD) for voltage and frequency stability assessments, control tuning and verification of off-grid hybrid power plants (HPPs) comprising both grid-forming and grid-feeding inverter units and synchronous generation. First, the requirement specifications are defined by means of system, functional and model requirements. Secondly, a modular approach for state-space modelling of the distributed energy resources (DERs) is presented. Flexible merging of subsystems by properly defining input and output vectors is highlighted to describe the dynamics of the HPP during various operating states. Eigenvalue (EV) and participation factor (PF) analyses demonstrate the necessity of assessing small-signal stability over a wide range of operational scenarios. A sensitivity analysis shows the impact of relevant system parameters on critical EVs and enables one to finally design and tune the central HPP controller (HPPC). The rapid control prototyping and control verification stages are accomplished by means of discrete-time domain models being used in both off-line simulation studies and real-time hardware-in-the-loop (RT-HIL) testing. The outcome of this paper is targeted at off-grid HPP operators seeking to achieve a proof-of-concept on stable voltage and frequency regulation. Nonetheless, the overall methodology is applicable to on-grid HPPs, too.


Sign in / Sign up

Export Citation Format

Share Document