The State Estimation for Falling Objects Based on Unscented Kalman Filter

Author(s):  
Ding Weifu
2020 ◽  
Vol 10 (23) ◽  
pp. 8484
Author(s):  
Yuanyuan Liu ◽  
Yaqiong Fu ◽  
Huipin Lin ◽  
Jingbiao Liu ◽  
Mingyu Gao ◽  
...  

The unscented Kalman filter (UKF) is widely used in many fields. When the unscented Kalman filter is combined with the H∞ filter (HF), the obtained unscented H∞ filtering (UHF) is very suitable for state estimation of nonlinear non-Gaussian systems. However, the application of state estimation is often limited by physical laws and mathematical models on some occasions. The standard unscented H∞ filtering always performs poorly under this situation. To solve this problem, this paper improves the UHF algorithm based on state constraints and studies the UHF algorithm based on the projection method. The standard UHF sigma points that violate the state constraints are projected onto the constraint boundary. Firstly, the paper gives a broad overview of H∞ filtering and unscented H∞ filtering, then addresses the issue of how to add constraints using the UHF approach, and finally, the new method is tested and evaluated by the gas-phase reversible reaction and the State of Charge (SOC) estimation examples. Simulation results show the validity and feasibility of the state-constrained UHF algorithm.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 971
Author(s):  
Yogendra Rao Musunuri ◽  
Oh-Seol Kwon

In this study, we propose a method for minimizing the noise of Kinect sensors for 3D skeleton estimation. Notably, it is difficult to effectively remove nonlinear noise when estimating 3D skeleton posture; however, the proposed randomized unscented Kalman filter reduces the nonlinear temporal noise effectively through the state estimation process. The 3D skeleton data can then be estimated at each step by iteratively passing the posterior state during the propagation and updating process. Ultimately, the performance of the proposed method for 3D skeleton estimation is observed to be superior to that of conventional methods based on experimental results.


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1530 ◽  
Author(s):  
Xi Liu ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Pengcheng Yue ◽  
Meng Wang

Author(s):  
Yi Pan ◽  
Hui Ye ◽  
Keke He

A modified interacting multiple model (IMM) method called spherical simplex unscented Kalman filter-based jumping and static IMM (SSUKF-JSIMM) is proposed to solve the problem of nonlinear filtering with unknown continuous system parameter. SSUKF-JSIMM regards the continuous system parameter space as a union of disjoint regions, and each region is assigned to a model. For each model, under the assumption that the parameter belongs to the corresponding region, one sub-filter is used to estimate the parameter and the state when the parameter is presumed to be jumping, and another sub-filter is used to estimate the parameter and the state when the parameter is presumed to be static. Considering that spherical simplex unscented Kalman filter (SSUKF) is more suitable for a real-time system than the unscented Kalman filter (UKF), SSUKFs are adopted as the sub-filters of SSUKF-JSIMM. Results of the two SSUKFs are fused as the estimation output of the model. Experimental results show that SSUKF-JSIMM achieves higher performance than IMM, SIR, and UKF in bearings-only tracking problem.


Sign in / Sign up

Export Citation Format

Share Document