One-Dimensional Quantum Mechanics: Motion within a Potential, Stationary Bound States

Author(s):  
Siegmund Brandt ◽  
Hans Dieter Dahmen
2016 ◽  
Vol 30 (03) ◽  
pp. 1650003 ◽  
Author(s):  
Aleksandar Demić ◽  
Vitomir Milanović ◽  
Jelena Radovanović ◽  
Milenko Musić

Bound states degenerated in energy (and differing in parity) may form in one-dimensional quantum mechanics if the potential is unbounded from below. We focus on symmetric potential and present quasi-exactly solvable (QES) model based on WKB method. The application of this method is limited on slow-changing potentials. We consider the overlap integral of WKB wave functions [Formula: see text] and [Formula: see text] which correspond to energies [Formula: see text] and [Formula: see text], and by setting [Formula: see text], we determine the type of spectrum depending on parameter [Formula: see text] which arises from this method. For finite value [Formula: see text], we show that the entire spectrum will consist of degenerated bound states.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sara Cruz y Cruz ◽  
Oscar Rosas-Ortiz

A classical optics waveguide structure is proposed to simulate resonances of short range one-dimensional potentials in quantum mechanics. The analogy is based on the well-known resemblance between the guided and radiation modes of a waveguide with the bound and scattering states of a quantum well. As resonances are scattering states that spend some time in the zone of influence of the scatterer, we associate them with the leaky modes of a waveguide, the latter characterized by suffering attenuation in the direction of propagation but increasing exponentially in the transverse directions. The resemblance is complete because resonances (leaky modes) can be interpreted as bound states (guided modes) with definite lifetime (longitudinal shift). As an immediate application we calculate the leaky modes (resonances) associated with a dielectric homogeneous slab (square well potential) and show that these modes are attenuated as they propagate.


2012 ◽  
Vol 27 (01) ◽  
pp. 1350001 ◽  
Author(s):  
S. Lj. S. KOČINAC ◽  
V. MILANOVIĆ

In this paper, we investigate phase rigidity of one-dimensional point interactions. With the aid of supersymmetric quantum mechanics (SUSYQM) we generate family of isospectral potentials describing point interactions. We than demonstrate that for SUSYQM generated bound states in the continuum (BIC) phase rigidity is always zero, while for bound states from discrete part of spectrum phase rigidity may vary from zero to unity, depending on the strength of point interaction.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


Sign in / Sign up

Export Citation Format

Share Document