The Dawn Mission to Vesta and Ceres

Author(s):  
C. T. Russell ◽  
C. A. Raymond
Keyword(s):  
2021 ◽  
Author(s):  
Victoria Munoz-Iglesias ◽  
Maite Fernández-Sampedro ◽  
Carolina Gil-Lozano ◽  
Laura J. Bonales ◽  
Oscar Ercilla Herrero ◽  
...  

<p>Ceres, dwarf planet of the main asteroid belt, is considered a relic ocean world since the Dawn mission discovered evidences of aqueous alteration and cryovolcanic activity [1]. Unexpectedly, a variety of ammonium-rich minerals were identified on its surface, including phyllosilicates, carbonates, and chlorides [2]. Although from the Dawn’s VIR spectroscopic data it was not possible to specify the exact type of phyllosilicates observed, montmorillonite is considered a good candidate owing to its ability to incorporate NH<sub>4</sub><sup>+</sup> in its interlayers [3]. Ammonium-rich phases are usually found at greater distances from the Sun. Hence, the study on their stability at environmental conditions relevant to Ceres’ interior and of its regolith can help elucidate certain ambiguities concerning the provenance of its precursor materials.</p> <p>In this study, it was investigated the changes in the spectroscopic signatures of the clay mineral montmorillonite after (a) being immersed in ammonium chloride aqueous solution and, subsequently, (b) washed with deionized water. After each treatment, samples were submitted to different environmental conditions relevant to the surface of Ceres. For one experiment, they were frozen overnight at 193 K, and then subjected to 10<sup>-5</sup> bar for up to 4 days in a Telstar Cryodos lyophilizer. For the other, they were placed inside the Planetary Atmospheres and Surfaces Chamber (PASC) [4] for 1 day at 100 K and 5.10<sup>-8</sup> bar. The combination of different techniques, i.e., Raman and IR spectroscopies, XRD, and SEM/EDX, assisted the assignment of the bands to each particular molecule. In this regard, the signatures of the mineral external surface were distinguished from the interlayered NH<sub>4</sub><sup>+ </sup>cations. The degree of compaction of the samples resulted crucial on their stability and spectroscopic response, being stiff smectites more resistant to low temperatures and vacuum conditions. In ground clay minerals, a decrease in the basal space with a redshift of the interlayered NH<sub>4</sub><sup>+</sup> IR band was measured after just 1 day of being exposed to vacuum conditions.</p> <p>Acknowledgments</p> <p>This work was supported by the Spanish MINECO projects ESP2017-89053-C2-1-P and PID2019-107442RB-C32, and the AEI project MDM‐2017‐0737 Unidad de Excelencia “María de Maeztu”.</p> <p>References</p> <p>[1] De Sanctis et al.,  Space Sci. Rev. 216, 60, 2020</p> <p>[2] Raponi et al., Icarus 320, 83,  2019</p> <p>[3] Borden and Giese, Clays Clay Miner. 49, 444, 2001</p> <p>[4] Mateo-Marti et al., Life 9, 72, 2019</p>


Author(s):  
C. T. Russell ◽  
H. Y. McSween ◽  
R Jaumann ◽  
C. A. Raymond
Keyword(s):  

2019 ◽  
Vol 623 ◽  
pp. A6 ◽  
Author(s):  
R. JL. Fétick ◽  
L. Jorda ◽  
P. Vernazza ◽  
M. Marsset ◽  
A. Drouard ◽  
...  

Context. Over the past decades, several interplanetary missions have studied small bodies in situ, leading to major advances in our understanding of their geological and geophysical properties. These missions, however, have had a limited number of targets. Among them, the NASA Dawn mission has characterised in detail the topography and albedo variegation across the surface of asteroid (4) Vesta down to a spatial resolution of ~20 m pixel−1 scale. Aims. Here our aim was to determine how much topographic and albedo information can be retrieved from the ground with VLT/SPHERE in the case of Vesta, having a former space mission (Dawn) providing us with the ground truth that can be used as a benchmark. Methods. We observed Vesta with VLT/SPHERE/ZIMPOL as part of our ESO large programme (ID 199.C-0074) at six different epochs, and deconvolved the collected images with a parametric point spread function (PSF). We then compared our images with synthetic views of Vesta generated from the 3D shape model of the Dawn mission, on which we projected Vesta’s albedo information. Results. We show that the deconvolution of the VLT/SPHERE images with a parametric PSF allows the retrieval of the main topographic and albedo features present across the surface of Vesta down to a spatial resolution of ~20–30 km. Contour extraction shows an accuracy of ~1 pixel (3.6 mas). The present study provides the very first quantitative estimate of the accuracy of ground-based adaptive-optics imaging observations of asteroid surfaces. Conclusions. In the case of Vesta, the upcoming generation of 30–40 m telescopes (ELT, TMT, GMT) should in principle be able to resolve all of the main features present across its surface, including the troughs and the north–south crater dichotomy, provided that they operate at the diffraction limit.


Icarus ◽  
2014 ◽  
Vol 240 ◽  
pp. 146-160 ◽  
Author(s):  
Anton I. Ermakov ◽  
Maria T. Zuber ◽  
David E. Smith ◽  
Carol A. Raymond ◽  
Georges Balmino ◽  
...  

Author(s):  
Kevin Righter

Asteroids 1 Ceres and 4 Vesta are the two most massive asteroids in the asteroid belt, with mean diameters of 946 km and 525 km, respectively. Ceres was reclassified as a dwarf planet by the International Astronomical Union as a result of its new dwarf planet definition which is a body that (a) orbits the sun, (b) has enough mass to assume a nearly round shape, (c) has not cleared the neighborhood around its orbit, and (d) is not a moon. Scientists’ understanding of these two bodies has been revolutionized in the past decade by the success of the Dawn mission that visited both bodies. Vesta is an example of a small body that has been heated substantially and differentiated into a metallic core, silicate mantle, and basaltic crust. Ceres is a volatile-rich rocky body that experienced less heating than Vesta and has differentiated into rock and ice. These two contrasting bodies have been instrumental in learning how inner solar system material formed and evolved.


Author(s):  
Marc D. Rayman ◽  
Thomas C. Fraschetti ◽  
Carol A. Raymond ◽  
Christopher T. Russell
Keyword(s):  

Icarus ◽  
2012 ◽  
Vol 217 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Vishnu Reddy ◽  
Juan A. Sanchez ◽  
Andreas Nathues ◽  
Nicholas A. Moskovitz ◽  
Jian-Yang Li ◽  
...  

2020 ◽  
Author(s):  
Lauri Siltala ◽  
Mikael Granvik

<p>Asteroid mass determination is performed by analyzing an asteroid's gravitational interaction with another object, such as a spacecraft, Mars, a companion in the case of binary asteroids, or a separate asteroid during a close encounter. During asteroid-asteroid close encounters, perturbations caused by the masses of larger asteroids can be detected in the post-encounter orbits of the smaller test asteroid involved in such an encounter. This can be described as an inverse problem where the aim is to fit six orbital elements for each asteroid and mass(es) for the perturbing asteroid(s), for a total of 13 parameters at minimum unless more asteroid-asteroid encounters are modeled simultaneously.<br /><br />To solve this inverse problem, which is traditionally done with least-squares methods, we have implemented a Markov-chain Monte Carlo (MCMC) based solution and recently (Siltala & Granvik 2020) reported, among others, significantly lower than expected masses and densities for the asteroid (16) Psyche in particular. Psyche is an interesting, and topical, object as it is the target of NASA's eponymous Psyche mission and is commonly thought to be of metallic or stony-iron composition, which our previous density estimates disagreed with. In our previous work our two separate mass estimates for Psyche were based on modeling encounters with two separate test asteroids in both cases. Since then we have further refined our mass estimate for Psyche by simultaneously using eight separate test asteroids for this object, significantly increasing the amount of observational data included on the model which, in turn, will narrow down the uncertainties of our results at the cost of additional model complexity. Here we report and discuss our latest results for the mass of Psyche based on this case and compute corresponding densities based on existing literature values for the volume. We obtain a mass of (0.972 ± 0.148) * 10^-11 solar masses for Psyche corresponding to a bulk density of (3.37 ± 0.58) g/cm³ which is higher than our previous results while remaining consistent with them considering the uncertainties involved. It still remains lower than other previous literature values. We compare our results to these previous literature values and briefly discuss possible physical implications of these results.<br /><br />In addition, due to previous interest from the scientific community, we have also computed mass estimates for Ceres and Vesta, both of which already have very precisely known masses from the Dawn mission. As such, our results for these two asteroids are not of direct scientific interest but they serve as an useful benchmark to verify that our algorithm provides realistic results as we have 'ground truth' values to compare our results to. We find that for both cases, our results are in line with those of Dawn.</p>


Sign in / Sign up

Export Citation Format

Share Document