basaltic crust
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Amy R. Smith ◽  
Ryan Mueller ◽  
Martin R. Fisk ◽  
Frederick S. Colwell

The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood–Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle. This organism encodes the genes for the complete canonical Wood–Ljungdahl pathway, but is potentially unable to use sulfate and certain organic carbon sources such as lipids and carbohydrates to supplement its energy requirements, unlike other known acetogens. Instead, this organism may use peptides and amino acids for energy or as organic carbon sources. Additionally, genes involved in surface adhesion, the import of metallic cations found in Fe-bearing minerals, and use of molecular hydrogen, a product of serpentinization reactions between water and olivine, are prevalent within the genome. These adaptations are likely a reflection of local environmental micro-niches, where cells are adapted to life in biofilms using ancient chemosynthetic metabolisms dependent on H2 and iron minerals. Since this organism is phylogenetically distinct from a related acetogenic group of Clostridiales, we propose it as a new species, Candidatus Acetocimmeria pyornia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan David Hernández-Montenegro ◽  
Richard M. Palin ◽  
Carlos A. Zuluaga ◽  
David Hernández-Uribe

AbstractArchean (4.0–2.5 Ga) tonalite–trondhjemite–granodiorite (TTG) terranes represent fragments of Earth’s first continents that formed via high-grade metamorphism and partial melting of hydrated basaltic crust. While a range of geodynamic regimes can explain the production of TTG magmas, the processes by which they separated from their source and acquired distinctive geochemical signatures remain uncertain. This limits our understanding of how the continental crust internally differentiates, which in turn controls its potential for long-term stabilization as cratonic nuclei. Here, we show via petrological modeling that hydrous Archean mafic crust metamorphosed in a non-plate tectonic regime produces individual pulses of magma with major-, minor-, and trace-element signatures resembling—but not always matching—natural Archean TTGs. Critically, magma hybridization due to co-mingling and accumulation of multiple melt fractions during ascent through the overlying crust eliminates geochemical discrepancies identified when assuming that TTGs formed via crystallization of discrete melt pulses. We posit that much Archean continental crust is made of hybrid magmas that represent up to ~ 40 vol% of partial melts produced along thermal gradients of 50–100 °C/kbar, characteristic of overthickened mafic Archean crust at the head of a mantle plume, crustal overturns, or lithospheric peels.


Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Elisabetta Rampone ◽  
Alessio Sanfilippo

The Alpine–Apennine ophiolites are lithospheric remnants of the Jurassic Alpine Tethys Ocean. They predominantly consist of exhumed mantle peridotites with lesser gabbroic and basaltic crust and are locally associated with continental crustal material, indicating formation in an environment transitional from an ultra-slow-spreading seafloor to a hyperextended passive margin. These ophiolites represent a unique window into mantle dynamics and crustal accretion in an ultra-slow-spreading extensional environment. Old, pre-Alpine, lithosphere is locally preserved within the mantle sequences: these have been largely modified by reaction with migrating asthenospheric melts. These reactions were active in both the mantle and the crust and have played a key role in creating the heterogeneous oceanic lithosphere in this branch of the Mesozoic Western Tethys.


Author(s):  
Kevin Righter

Asteroids 1 Ceres and 4 Vesta are the two most massive asteroids in the asteroid belt, with mean diameters of 946 km and 525 km, respectively. Ceres was reclassified as a dwarf planet by the International Astronomical Union as a result of its new dwarf planet definition which is a body that (a) orbits the sun, (b) has enough mass to assume a nearly round shape, (c) has not cleared the neighborhood around its orbit, and (d) is not a moon. Scientists’ understanding of these two bodies has been revolutionized in the past decade by the success of the Dawn mission that visited both bodies. Vesta is an example of a small body that has been heated substantially and differentiated into a metallic core, silicate mantle, and basaltic crust. Ceres is a volatile-rich rocky body that experienced less heating than Vesta and has differentiated into rock and ice. These two contrasting bodies have been instrumental in learning how inner solar system material formed and evolved.


2020 ◽  
Author(s):  
Antoine Rozel ◽  
Stephen Mojzsis ◽  
Martin Guitreau ◽  
Antonio Manjón Cabeza Córdoba ◽  
Maxim Ballmer ◽  
...  

<p>More and more convection codes now consider the apparition of melt when the temperature of the mantle exceeds a considered solidus temperature. How melt is treated when it appears varies a lot from one code to another. The convection code StagYY has been using an implementation in which molten eclogite is produced out of melting of mixed mantle. The melt is then teleported above ("erupted") or below ("intruded") the basaltic crust. In a recent study by Jain et al. 2019, we have shown that it is possible to also self-consistently generate continental crust (so-called TTG rocks) if the basaltic crust is entrained in the mantle and remolten. In nature, this only happens if a lot of water is present in the recycled basalt so a numerical treatment of water is necessary.</p><p>In this poster, we discuss the details of a new implementation of melting in which each cell of the convection domain is divided in several groups of different composition. Each group has a different solidus and liquidus temperature according to the composition and the water content. The solidus temperature is computed using an interpolation between composition and water concentration end members instead of using an extrapolation from the solidus temperature, as it is usually done. This ensures that TTGs form at a realistic melt fraction and provides a different view on how the continental crust of the early Earth might have formed.</p>


2019 ◽  
Vol 509 ◽  
pp. 234-248 ◽  
Author(s):  
Heng-Ci Tian ◽  
Wei Yang ◽  
Shu-Guang Li ◽  
Hai-Quan Wei ◽  
Zhuo-Sen Yao ◽  
...  

Nature ◽  
2019 ◽  
Vol 565 (7738) ◽  
pp. 218-221 ◽  
Author(s):  
Steeve Gréaux ◽  
Tetsuo Irifune ◽  
Yuji Higo ◽  
Yoshinori Tange ◽  
Takeshi Arimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document