Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Author(s):  
Duc Thai Nguyen
Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2014 ◽  
Vol 60 (4) ◽  
pp. 397-408
Author(s):  
K.K. Adewole ◽  
S.J. Bull

AbstractThis paper presents a numerical investigation of the effects of lamination orientation on the fracture behaviour of rectangular steel wires for civil engineering applications using finite element (FE) analysis. The presence of mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture with an opening at the bottom/pointed end of the V-shape at the mid-thickness across-the-width lamination location. The presence of mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the lamination location. The FE fracture behaviour prediction approach adopted in this work provides an understanding of the effects of lamination orientation on the fracture behaviour of wires for civil engineering applications which cannot be understood through experimental investigations because it is impossible to machine laminations in different orientations into wire specimens.


2014 ◽  
Vol 1030-1032 ◽  
pp. 905-907
Author(s):  
Xi Dong Wang ◽  
Yong Fen Ruan

Sand lining teethed pile is a new prestressed pile, and it has been gradually spread and used in Kun Ming of Yun Nan Province, meanwhile, it has achieved better work in practical engineering applications. Compared with common prestressed smooth pile, the working mechanism that tooth of the pile combines with the sand lining of the pile makes bearing capacity and the play speed of bearing capacity have significantly improved. This paper builds a three-dimensional entity pile base model with Midas GTS and analyzes the work performance of two kinds of precast piles from pile settlement and soil displacement around pile aspects. This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


2013 ◽  
Vol 671-674 ◽  
pp. 1561-1569
Author(s):  
Yan Li Wang ◽  
Guang Hui Qing

Firstly, based on the theory of state-vector equation, the semi-analysis finite element formulation for the stability of the plates under various boundary conditions was derived by modified Hellinger-Reissner (H-R) variation principle for the elastic material. Secondly, the three-dimensional models for the stability of stiffened plates were established. The semi-analytical solution of state equation for the stability of stiffened plates are proved to be efficient and accurate by comparing with the exact solutions of references and the numerical solutions of the finite element software through several examples.


2010 ◽  
Vol 638-642 ◽  
pp. 1017-1022
Author(s):  
A. Ionita ◽  
B.E. Clements ◽  
E.M. Mas

In engineering applications, simulations involving heterogeneous materials where it is necessary to capture the local response coming from the heterogeneities is very difficult. The use of homogenization techniques can reduce the size of the problem but will miss the local effects. Homogenization can also be difficult if the constituents obey different constitutive laws. Additional complications arise if inelastic deformation occurs. In such cases a two-scale approach is preferred and this work addresses these issues in the context of a two-scale Finite Element Method (FEM). Examples of using two-scale FEM approaches are presented.


2021 ◽  
Vol 3 (2) ◽  
pp. 75-84
Author(s):  
Smitha T. V. ◽  
Madhura S ◽  
Sindhu R ◽  
Brundha R

In this paper our aim is to provide a survey of mesh generation techniques for some Engineering applications. Mesh generation is a very important requirement to solve any problem by very popular numerical method known as Finite element method (FEM). It has several applications in various fields. One such technique is Automated generation of finite element meshes for aircraft conceptual design. It’s an approach for automated generation of fully connected finite element meshes for all internal structural components, given wing body, geometry model, controlled by a few conceptual level structural layout parameters. Another application where it is used is in the study of biomolecules to generate volumetric mesh of a biomolecule of any size and shape based on its atomic structure. These methods are proved to be a faster method due to the usage of computing techniques. Mesh generator is also used for creating finite element surface and volumetric mesh from 3D binary and gray scale medical images. Some of the applications include volumetric images, surface mesh extraction, surface mesh repairing and many more. It is of great importance in understanding the human brain which is a complex subject. Though 3D visualization is a useful tool available, yet it is inadequate due to its challenging computational problem. This paper also includes the survey on latest tools used for these applications which overcomes many problems associated with the conventional approaches.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 257
Author(s):  
Sorin Vlase ◽  
Marin Marin ◽  
Negrean Iuliu

This paper presents the main analytical methods, in the context of current developments in the study of complex multibody systems, to obtain evolution equations for a multibody system with deformable elements. The method used for analysis is the finite element method. To write the equations of motion, the most used methods are presented, namely the Lagrange equations method, the Gibbs–Appell equations, Maggi’s formalism and Hamilton’s equations. While the method of Lagrange’s equations is well documented, other methods have only begun to show their potential in recent times, when complex technical applications have revealed some of their advantages. This paper aims to present, in parallel, all these methods, which are more often used together with some of their engineering applications. The main advantages and disadvantages are comparatively presented. For a mechanical system that has certain peculiarities, it is possible that the alternative methods offered by analytical mechanics such as Lagrange’s equations have some advantages. These advantages can lead to computer time savings for concrete engineering applications. All these methods are alternative ways to obtain the equations of motion and response time of the studied systems. The difference between them consists only in the way of describing the systems and the application of the fundamental theorems of mechanics. However, this difference can be used to save time in modeling and analyzing systems, which is important in designing current engineering complex systems. The specifics of the analyzed mechanical system can guide us to use one of the methods presented in order to benefit from the advantages offered.


Sign in / Sign up

Export Citation Format

Share Document