Brush Border Myosin I Has A Calmodulin/Phosphatidylserine Switch and Tail Actin-Binding

Author(s):  
Helena Swanljung-Collins ◽  
Jimmy H. Collins
Keyword(s):  
1995 ◽  
Vol 108 (12) ◽  
pp. 3775-3786 ◽  
Author(s):  
C. Ruppert ◽  
J. Godel ◽  
R.T. Muller ◽  
R. Kroschewski ◽  
J. Reinhard ◽  
...  

Myr 1 is a widely distributed mammalian myosin I molecule related to brush border myosin 1. A second widely distributed myosin I molecule similar to myr 1 and brush border myosin I, called myr 2, has now been identified. Specific antibodies and expression of epitope-tagged molecules were used to determine the subcellular localization of myr 1 and myr 2 in NRK cells. Myr 1 was detected at the plasma membrane and was particularly enriched in cell protrusions like lamellipodia, membrane ruffles and filopodia. In dividing cells myr 1 localized to the cleavage furrow. Myr 2 was localized in a discrete punctate pattern in resting cells and in cells undergoing cytokinesis. In subcellular fractionation experiments myr 1 and myr 2 were both partly soluble and partly associated with smooth membranes of medium density. The tail domains of myosin I molecules have been proposed to interact with a receptor and thereby determine the subcellular localization. To test this hypothesis we expressed the tail domains of myr 1 and myr 2 that lack the F-actin-binding myosin head domain in NRK cells. These tail domains also partly copurified with smooth membranes of medium density and immunolocalized similar to the respective endogenous myosin I; however, they exhibited a lower affinity for membranes and an increased diffuse cytosolic localization. These results suggest that the tail domains of myr 1 and myr 2 are sufficient for subcellular targeting but that their head domains also contribute significantly to maintaining a proper subcellular localization.


1994 ◽  
Vol 107 (12) ◽  
pp. 3535-3543 ◽  
Author(s):  
M.B. Heintzelman ◽  
T. Hasson ◽  
M.S. Mooseker

Representatives of class V and class VI unconventional myosins are identified as components of the intestinal brush border cytoskeleton. With brush border myosin-I and myosin-II, this brings to four the number of myosin classes associated with this one subcellular domain and represents the first characterization of four classes of myosins expressed in a single metazoan cell type. The distribution and cytoskeletal association of each myosin is distinct as assessed by both biochemical fractionation and immunofluorescence localization. Myosin-VI exists in both the microvillus and terminal web although the terminal web is the predominant site of concentration. Myosin-V is present in the terminal web and, most notably, at the distal ends of the microvilli, thus becoming the first actin-binding protein to be localized to this domain as assessed by both immunohistochemical and biochemical methods. In the undifferentiated enterocytes of the intestinal crypts, myosin-VI is expressed but not yet localized to the brush border, in contrast to myosin-V, which does demonstrate an apical distribution in these cells. An assessment of myosin abundance indicates that while myosin-II is the most abundant in the cell and in the brush border, brush border myosin-I is only slightly less abundant in contrast to myosins-V and -VI, both of which are two orders of magnitude less abundant than the others. Extraction studies indicate that of these four myosins, myosin-V is the most tightly associated with the brush border membrane, as detergent, in addition to ATP, is required for efficient solubilization.


1996 ◽  
Vol 133 (6) ◽  
pp. 1277-1291 ◽  
Author(s):  
H V Goodson ◽  
B L Anderson ◽  
H M Warrick ◽  
L A Pon ◽  
J A Spudich

The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non-motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae.


1994 ◽  
Vol 107 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. Footer ◽  
A. Bretscher

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When introduced into cultured cells that normally lack the protein, villin induces a reorganization of the actin filaments to generate large surface microvilli. Here we examine the consequences of microinjecting brush border myosin-I either alone or together with villin into cultured fibroblasts. Injection of brush border myosin-I has no discernible effect on the overall morphology of the cells, but does become localized to either normal or villin-induced microvilli and other surface structures containing an actin cytoskeleton. Since some endogenous myosin-Is have been found associated with cytoplasmic vesicles, these results show that brush border myosin-I has a domain that specifically targets it to the plasma membrane in both intestinal and cultured cell systems. Ultrastructural examination of microvilli on control cultured cells revealed that they contain a far more highly ordered bundle of microfilaments than had been previously appreciated. The actin filaments in microvilli of villin-injected cells appeared to be more tightly cross-linked when examined by thin-section electron microscopy. In intestinal microvilli, the core bundle is separated from the plasma membrane by about 30 nm due to the presence of brush border myosin-I.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 120 (6) ◽  
pp. 1393-1403 ◽  
Author(s):  
C Ruppert ◽  
R Kroschewski ◽  
M Bähler

We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.


1997 ◽  
Vol 273 (2) ◽  
pp. C347-C359 ◽  
Author(s):  
L. M. Coluccio

The class I myosins are single-headed, actin-binding, mechanochemical “motor” proteins with heavy chains in the molecular mass range of 110-130 kDa; they do not form filaments. Each myosin I heavy chain is associated with one to six light chains that bind to specific motifs known as IQ domains. In vertebrate myosin I isoforms, the light chain is calmodulin, which is thought to regulate motor activity. Proteins similar to calmodulin are associated with myosin I isoforms from lower eukaryotes. Some myosin I isoforms from lower eukaryotes are regulated by phosphorylation; however, the phosphorylation site is not present in vertebrate myosin I isoforms. Based on sequence analyses of the amino terminal “head” domains, myosin I can be subdivided into several subclasses. Analyses of the biochemical properties of the isolated molecules and localization studies support the proposal of roles for these molecules in intracellular trafficking and changes in membrane structure. Our present understanding of the properties of these molecules and their proposed roles is reviewed here.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1999 ◽  
Vol 361 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Mikhail I. Khoroshev ◽  
Scott J. Munson ◽  
Daniel D. Bikle

Sign in / Sign up

Export Citation Format

Share Document