scholarly journals Identification, characterization and cloning of myr 1, a mammalian myosin-I.

1993 ◽  
Vol 120 (6) ◽  
pp. 1393-1403 ◽  
Author(s):  
C Ruppert ◽  
R Kroschewski ◽  
M Bähler

We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.

1994 ◽  
Vol 126 (2) ◽  
pp. 375-389 ◽  
Author(s):  
M Bähler ◽  
R Kroschewski ◽  
H E Stöffler ◽  
T Behrmann

We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I's. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F-actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.


2005 ◽  
Vol 52 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Barbara Barylko ◽  
Gwanghyun Jung ◽  
Joseph P Albanesi

Myosin 1C, the first mammalian single-headed myosin to be purified, cloned, and sequenced, has been implicated in the translocation of plasma membrane channels and transporters. Like other forms of myosin I (of which eight exist in humans) myosin 1C consists of motor, neck, and tail domains. The neck domain binds calmodulins more tightly in the absence than in the presence of Ca(2+). Release of calmodulins exposes binding sites for anionic lipids, particularly phosphoinositides. The tail domain, which has an isoelectic point of 10.5, interacts with anionic lipid headgroups. When both neck and tail lipid binding sites are engaged, the myosin associates essentially irreversibly with membranes. Despite this tight membrane binding, it is widely believed that myosin 1C docking proteins are necessary for targeting the enzyme to specific subcellular location. The search for these putative myosin 1C receptors is an active area of research.


1987 ◽  
Author(s):  
S E D’Souza ◽  
M H Ginaberg ◽  
S Lam ◽  
E A Plow

The platelet adhesive proteins, fibrinogen, fibronectin and von WillebrandFactor, contain RGD amino acid sequences; RGD-containing peptides inhibit the binding of these adhesive proteins to platelets; and a membrane receptor for these adhesive proteins binds to Arg-Gly-Asp and contains GPIIb-IIIa. The present study was undertaken to characterize the interaction of RGDpeptides with GPIIb-IIIa using a chemical crosslinking approach. A radioiodinated RGD-containing heptapeptide was bound to washed human platelets under conditions at which ≥ 85% of theinteraction was inhibited by excess nonlabeled peptide. After binding of the peptide to platelets for 45 min at22°, a homobifunctional crosslinking reagent was added, and the platelets were extracted and analyzed on polyacrylamide gels. With resting platelets,autoradiography of the gels revealedthat the peptide crosslinked tobothGPIIb and GPIIIa. This interaction wasinhibited by excess nonlabeled peptide but not by certain conservatively substituted RGD peptides. Stimulation of the platelets caused a dramatic increase in crosslinking of the peptide to only one of the two subunitsof GPIIb-IIIa. The stimulus dependentincrease in the crosslinking reactionwas specific and saturable as it was inhibited by RGD peptides in a dose dependent manner. In addition, peptides corresponding in structure to the carboxy terminus of the γ chain of fibrinogen also produced concentration dependent inhibition of the interaction. The increase in crosslinking induced by platelet stimulation was divalent ion dependent. Similar results werealso obtained with a second, larger RGD-containing peptide and with asecond chemical crosslinking reagent.Theseresults indicate that platelet stimulation in the presence of divalent ions causes a change which permitsmoreefficient crosslinking of RGD-containing peptides to only one of the two subunits of GPIIb-IIIa. The results are also compatible with a proximalrelationship of both subunits tothe RGD binding sites on the plateletmembrane.


1991 ◽  
Vol 46 (7-8) ◽  
pp. 557-562 ◽  
Author(s):  
A. Trebst

Abstract A new contact site between the two reaction center polypeptides D 1 and D 2 of photosystem II close to arg 238 and arg 234 respectively is proposed. The amino acid sequences involved are between the 4 th transmembrane and a connecting parallel helix. The sequence includes a tryp­ sin sensitive site in both polypeptides, the likely cleavage site in the rapid turnover of the D 1 polypeptide and part of the herbicide binding site. The contact site is oriented towards both quinone binding sites Q A and Q B. A folding of the backbone of the amino acid sequences involved is proposed.


1983 ◽  
Vol 18 (6) ◽  
pp. 557-560 ◽  
Author(s):  
K. SLETTEN ◽  
P. WESTERMARK ◽  
P. PITKANEN ◽  
N. THYRESSON ◽  
O. K. OLSTAD

1988 ◽  
Vol 256 (2) ◽  
pp. 453-459 ◽  
Author(s):  
O Nakanishi ◽  
Y Homma ◽  
H Kawasaki ◽  
Y Emori ◽  
K Suzuki ◽  
...  

Two kinds of phosphoinositide-specific phospholipase C (PLC) were purified from rat liver by acid precipitation and several steps of column chromatography. About 50% of the activity could be precipitated when the pH of the liver homogenate was lowered to pH 4.7. The redissolved precipitate yielded two peaks, PLC I and PLC II, in an Affi-gel Blue column, and each was further purified to homogeneity by three sequential h.p.l.c. steps, which were different for the two enzymes. The purified PLC I and PLC II had estimated Mr values of 140,000 and 71,000 respectively on SDS/polyacrylamide-gel electrophoresis. Both enzymes hydrolysed phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in a Ca2+- and pH-dependent manner. PLC I was most active at 10 microM- and 0.1 mM-Ca2+ for hydrolysis of PI and PIP2 respectively, whereas PLC II showed the highest activity at 5 mM- and 10 microM-Ca2+ for that of PI and PIP2 respectively. The optimal pH of the two enzymes also differed with substrates or Ca2+ concentration, in the range pH 5.0-6.0. Hydrolysis of phosphoinositides by these enzymes was completely inhibited by Hg2+ and was affected by other bivalent cations. From data obtained by peptide mapping and partial amino acid sequencing, it was clarified that PLC I and PLC II had distinct structures. Moreover, partial amino acid sequences of three proteolytic fragments of PLC I completely coincided with those of PLC-148 [Stahl, Ferenz, Kelleher, Kriz & Knopf (1988) Nature (London) 332, 269-272].


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183756 ◽  
Author(s):  
Xiaoyong Cao ◽  
Xiuzhen Hu ◽  
Xiaojin Zhang ◽  
Sujuan Gao ◽  
Changjiang Ding ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3578-3584 ◽  
Author(s):  
Valli De Re ◽  
Salvatore De Vita ◽  
Alessandra Marzotto ◽  
Maurizio Rupolo ◽  
Annunziata Gloghini ◽  
...  

Analysis of the immunoglobulin receptor (IGR) variable heavy- and light-chain sequences on 17 hepatitis C virus (HCV)-associated non-Hodgkin lymphomas (NHLs) (9 patients also had type II mixed cryoglobulinemia [MC] syndrome and 8 had NHL unrelated to MC) and analysis of intraclonal diversity on 8 of them suggest that such malignant lymphoproliferations derive from an antigen-driven pathologic process, with a selective pressure for the maintenance of a functional IgR and a negative pressure for additional amino acid mutations in the framework regions (FRs). For almost all NHLs, both heavy- and light-chain complementarity-determining regions (CDR3) showed the highest similarity to antibodies with rheumatoid factor (RF) activity that have been found in the MC syndrome, thus suggesting that a common antigenic stimulus is involved in MC syndrome and in HCV-associated lymphomagenesis. Moreover, because HCV is the recognized pathologic agent of MC and the CDR3 amino acid sequences of some HCV-associated NHLs also present a high homology for antibody specific for the E2 protein of HCV, it may be reasonable to speculate that HCV E2 protein is one of the chronic antigenic stimuli involved in the lymphomagenetic process. Finally, the use of specific segments, in particular the D segment, in assembling the IgH chain of IgR seems to confer B-cell disorders with the property to produce antibody with RF activity, which may contribute to the manifestation of an overt MC syndrome.


Sign in / Sign up

Export Citation Format

Share Document