Amylin and Neuromedin U - Two Novel Regulatory Peptides of the Gastroenteropancreatic System

Author(s):  
S R Bloom
Keyword(s):  
1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S115-S116
Author(s):  
G. BERNATZKY ◽  
G. W. HACKER ◽  
W. MOTZ ◽  
A. SARIA ◽  
I. MUSIOL

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Audrey Montigny ◽  
Patrizia Tavormina ◽  
Carine Duboe ◽  
Hélène San Clémente ◽  
Marielle Aguilar ◽  
...  

Abstract Background Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. Results We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. Conclusion Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.


1992 ◽  
Vol 122 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Isabelle Le Huerou-Luron ◽  
Paul Guilloteau ◽  
Catherine Wicker-Planquart ◽  
Jean-Alain Chayvialle ◽  
John Burton ◽  
...  

1984 ◽  
Vol 62 (6) ◽  
pp. 734-737 ◽  
Author(s):  
F. Shanahan ◽  
J. A. Denburg ◽  
J. Bienenstock ◽  
A. D. Befus

Increasing evidence for the existence of inter- and intra-species mast cell heterogeneity has expanded the potential biological role of this cell. Early studies suggesting that mast cells at mucosal sites differ morphologically and histochemically from connective tissue mast cells have been confirmed using isolated intestinal mucosal mast cells in the rat and more recently in man. These studies also established that mucosal mast cells are functionally distinct from connective tissue mast cells. Thus, mucosal and connective tissue mast cells differ in their responsiveness to a variety of mast cell secretagogues and antiallergic agents. Speculation about the therapeutic use of antiallergic drugs in disorders involving intestinal mast cells cannot, therefore, be based on extrapolation from studies of their effects on mast cells from other sites. Regulatory mechanisms for mast cell secretion may also be heterogeneous since mucosal mast cells differ from connective tissue mast cells in their response to a variety of physiologically occurring regulatory peptides. The development of techniques to purify isolated mast cell sub-populations will facilitate future analysis of the biochemical basis of the functional heterogeneity of mast cells.


Sign in / Sign up

Export Citation Format

Share Document