Biological Fate and Effect of Coalbed Methane Produced Waters Discharged into Streams of the Warrior Basin, Alabama

1992 ◽  
pp. 315-327
Author(s):  
P. E. O’Neil ◽  
S. C. Harris ◽  
M. F. Mettee ◽  
H. R. Isaacson ◽  
J. M. Evans
Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 154
Author(s):  
Udayan Singh ◽  
Lisa M. Colosi

Development of coalbed methane (CBM) projects is critical to the achievement of climate change goals because it will help facilitate coal-to-gas transitions in Asia-Pacific countries with low conventional gas reserves. However, growth in CBM in these regions will necessitate strategic, sustainable approaches to produced water management. We posit that it may be possible to deliver synergistic water, energy, and health benefits by reusing CBM-produced waters as potable water supply in water-stressed coal-bearing regions. The goal of this study is to probabilistically evaluate life cycle costs and benefits of using reverse osmosis to treat CBM-produced water in the Damodar Valley coalfields in eastern India. Two treatment configurations are assessed, namely, centralized, and decentralized (i.e., in-home). We find that both configurations offer good cost-effectiveness based on two separately computed metrics to account for the value of health improvement benefits (i.e., disability-adjusted life years (DALYs) averted or monetized health benefits). We also observe that centralized systems are more cost-effective than decentralized, because they reduce capital cost and use-phase energy consumption per unit-volume treated. Average estimated values for the cost–benefit ratio are <0.5 and 1.0 for centralized and decentralized, respectively. Normalizing by anticipated health benefits, cost-effectiveness metrics are <$30/DALY for the centralized system versus <$200/DALY for the decentralized system. These results are highly sensitive to the value of statistical life and baseline water access. A related analysis taking into account both CBM-produced waters and mine waters revealed that deployment of reverse osmosis (RO) could provide drinking to approximately 3.5 million people over 20 years in the Damodar Valley region. These results have interesting implications not only for the study region but also for other CBM-producing countries experiencing chronic severe water stress.


2019 ◽  
Vol 26 (31) ◽  
pp. 31956-31980 ◽  
Author(s):  
Zheng Zhang ◽  
Detian Yan ◽  
Xinguo Zhuang ◽  
Shuguang Yang ◽  
Gang Wang ◽  
...  

2011 ◽  
Vol 18 (3) ◽  
pp. 169-187 ◽  
Author(s):  
Mark A. Engle ◽  
Carleton R. Bern ◽  
Richard W. Healy ◽  
James I. Sams ◽  
John W. Zupancic ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


Sign in / Sign up

Export Citation Format

Share Document