Layer Thickness Determination of Thin Films by Grazing Incidence X-Ray Experiments Using Interference Effect

1992 ◽  
pp. 813-818 ◽  
Author(s):  
Kenji Sakurai ◽  
Atsuo Iida
1991 ◽  
Vol 35 (B) ◽  
pp. 813-818 ◽  
Author(s):  
Kenji Sakurai ◽  
Atsuo Iida

AbstractA novel method using Fourier transform algorithm is proposed to determine each layer thickness of multi-layered thin films from interference oscillation observed in X-ray specular reflection. The peak position in Fourier space gives each layer thickness of the film. The principle of the present technique as well as its applications are described.


1991 ◽  
Vol 35 (A) ◽  
pp. 143-150 ◽  
Author(s):  
T. C. Huang

AbstractGrazing-incidence X-ray analysis techniques which are commonly used for the nondestructive characterization of surfaces and thin films are reviewed. The X-ray reflectivity technicue is used to study surface uniformity and oxidation, layer thickness and density, interface roughness and diffusion, etc. The grazing-incidence in-plane diffraction technique is used to determine in-plane crystallography of epitaxial films. The grazing-incidence asymmetric-Bragg diffraction is used for surface phase identification and structural depth profiling determination of polycrystalline films. Typical examples to illustrate the types of information that can be obtained by the techniques are presented.


1998 ◽  
Vol 34 (4) ◽  
pp. 831-833 ◽  
Author(s):  
T.P.A. Hase ◽  
K. Tanner ◽  
P. Ryan ◽  
C.H. Marrows ◽  
B.J. Hickey

1991 ◽  
Vol 239 ◽  
Author(s):  
Ramnath Venkatraman ◽  
Paul R. Besser ◽  
Sean Brennan ◽  
John C. Bravman

ABSTRACTWe have measured elastic strain distributions with depth as a function of temperature in Al thin films of various thicknesses on oxidized silicon using synchrotron grazing incidence X-ray scattering (GIXS). Disregarding minor surface relaxation effects that depend on the film thickness, it is shown that there are no gross strain gradients in these films in the range of temperatures (between room temperature and 400°C) considered. We also observe X-ray line broadening effects, suggesting an accumulation of dislocations on cooling the films, and their annealing out as the films are reheated.


2016 ◽  
Vol 23 (3) ◽  
pp. 729-734 ◽  
Author(s):  
Roland Resel ◽  
Markus Bainschab ◽  
Alexander Pichler ◽  
Theo Dingemans ◽  
Clemens Simbrunner ◽  
...  

Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.


2008 ◽  
Vol 516 (22) ◽  
pp. 7967-7973 ◽  
Author(s):  
K. Galicka-Fau ◽  
C. Legros ◽  
M. Andrieux ◽  
M. Herbst-Ghysel ◽  
I. Gallet ◽  
...  

1991 ◽  
Vol 35 (A) ◽  
pp. 151-157
Author(s):  
G. Will ◽  
T. C. Huang ◽  
F. Sequeda

The structural characterization of thin films is important for research development and manufacturing of electronic, magnetic, optical, and other high-tech materials. The grazing incidence X-ray diffraction technique has bean used successfully for the determination of crystalline phases, structural-depth profiles, crystallite size, and strain, etc. of thin films with thickness's down to a few tens of Å, If the crystal structure, e.g. the distribution of atoms in the unit cell, or the crystallinity and texture (or preferred orientation) of a film is of interest, the conventional Bragg-Brentano diffractometer technique with the θ-2θ scanning geometry has been found to be appropriate.


Sign in / Sign up

Export Citation Format

Share Document