Molecular Mechanisms of Phenotypic Modulation of Vascular Smooth Muscle Cells

Author(s):  
Masahiko Kurabayashi ◽  
Ryozo Nagai
2015 ◽  
Vol 309 (12) ◽  
pp. E995-E1007 ◽  
Author(s):  
Lisa Rigassi ◽  
Federica Barchiesi Bozzolo ◽  
Eliana Lucchinetti ◽  
Michael Zaugg ◽  
Jürgen Fingerle ◽  
...  

2-Methoxyestradiol (2-ME), a metabolite of estradiol with little affinity for estrogen receptors, inhibits proliferation of vascular smooth muscle cells; however, the molecular mechanisms underlying this effect are incompletely understood. Our previous work shows that 2-ME inhibits initiation (blocks phosphorylation of ERK and Akt) and progression (reduces cyclin expression and increases expression of cyclin inhibitors) of the mitogenic pathway and interferes with mitosis (disrupts tubulin organization). Because the RhoA/ROCK1 pathway (RhoA → ROCK1 → myosin phosphatase targeting subunit → myosin light chain) is involved in cytokinesis, herein we tested the concept that 2-ME also blocks the RhoA/ROCK1 pathway. Because of the potential importance of 2-ME for preventing/treating vascular diseases, experiments were conducted in female human aortic vascular smooth muscle cells. Microarray transcriptional profiling suggested an effect of 2-ME on the RhoA/ROCK1 pathway. Indeed, 2-ME blocked mitogen-induced GTP-bound RhoABC expression and membrane-bound RhoA, suggesting interference with the activation of RhoA. 2-ME also reduced ROCK1 expression, suggesting reduced production of the primary downstream signaling kinase of the RhoA pathway. Moreover, 2-ME inhibited RhoA/ROCK1 pathway downstream signaling, including phosphorylated myosin phosphatase targeting subunit and myosin light chain; the ROCK1 inhibitor H-1152 mimicked these effects of 2-ME; both 2-ME and H-1152 blocked cytokinesis. 2-ME also reduced the expression of tissue factor, yet another downstream signaling component of the RhoA/ROCK1 pathway. We conclude that 2-ME inhibits the pathway RhoA → ROCK1 → myosin phosphatase targeting subunit → myosin light chain, and this likely contributes to the reduced cytokinesis in 2-ME treated HASMCs.


2006 ◽  
Vol 291 (1) ◽  
pp. C50-C58 ◽  
Author(s):  
Mei Han ◽  
Jin-Kun Wen ◽  
Bin Zheng ◽  
Yunhui Cheng ◽  
Chunxiang Zhang

Phenotypic change of vascular smooth muscle cells (VSMCs) from a differentiated to a dedifferentiated state accompanies the early stage of atherosclerosis and restenosis. Although much progress has been made in determining the molecular mechanisms involved in VSMC dedifferentiation, research on VSMC redifferentiation is hindered by the lack of an appropriate complete redifferentiation model. We established an in vitro model of redifferentiation by using postconfluent VSMCs from human umbilical artery. We demonstrated that serum-deprived VSMCs are capable of complete redifferentiation. After serum deprivation, postconfluent cultured human umbilical VSMCs became elongated and spindle shaped, with elevation of myofilament density, and reacquired contraction. Expressions of VSMC-specific contractile proteins, such as smooth muscle (SM) α-actin, SM-myosin heavy chain, calponin, and SM 22α, were increased and reached the levels in differentiated cells after serum deprivation. To determine the molecular mechanism of the phenotypic reversion, the levels of expression, phosphorylation, and binding activity of serum response factor (SRF), a key phenotypic modulator for VSMCs, were measured. The results showed that SRF binding activity with CArG motif was significantly increased after serum deprivation, whereas no changes were found in SRF expression and phosphorylation. The increased SRF binding activity was accompanied by an increase in expression of its coactivators such as myocardin. Furthermore, the phenotypic reversion was markedly inhibited by decoy double-strand oligodeoxynucleotides containing SM α-actin CArG motif, which was able to competitively bind to SRF. The results suggested that serum deprivation results in redifferentiation of human umbilical VSMCs. This novel model of VSMC phenotypic reversion should be valuable for research on vascular disease.


Sign in / Sign up

Export Citation Format

Share Document