How do distributed design organizations act together to create a meaningful design?

1999 ◽  
pp. 99-115 ◽  
Author(s):  
Jeffrey Huang
Keyword(s):  
2007 ◽  
Author(s):  
P Cahill ◽  
◽  
D Larkins ◽  
J Paquin ◽  
M Barber ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Erich Devendorf ◽  
Kemper Lewis

Time is an asset of critical importance in a multidisciplinary design process and it is desirable to reduce the amount of time spent designing products and systems. Design is an iterative activity and designers consume a significant portion of the product development process negotiating a mutually acceptable solution. The amount of time necessary to complete a design depends on the number and duration of design iterations. This paper focuses on accurately characterizing the number of iterations required for designers to converge to an equilibrium solution in distributed design processes. In distributed design, systems are decomposed into smaller, coupled design problems where individual designers have control over local design decisions and seek to achieve their own individual objectives. These smaller coupled design optimization problems can be modeled using coupled games and the number of iterations required to reach equilibrium solutions varies based on initial conditions and process architecture. In this paper, we leverage concepts from game theory, classical controls, and discrete systems theory to evaluate and approximate process architectures without carrying out any solution iterations. As a result, we develop an analogy between discrete decisions and a continuous time representation that we analyze using control theoretic techniques.


Author(s):  
Jae Yeol Lee ◽  
Hyun Kim ◽  
Sung-Bae Han

Abstract Network and Internet technology open up another domain for building future CAD/CAM environments. The environment will be global, network-centric, and spatially distributed. In this paper, we present Web-enabled feature-based modeling in a distributed design environment. The presented approach combines the current feature-based modeling technique with distributed computing and communication technology for supporting product modeling and collaborative design activities over the network. The approach is implemented in a client/server architecture, in which Web-enabled feature modeling clients, neutral feature model server, and other applications communicate with one another via a standard communication protocol. The paper discusses how the neutral feature model supports multiple views and maintains naming consistency between geometric entities of the server and clients as the user edits the part in a client. Moreover, it explains how to minimize the network delay between the server and client according to dynamic feature modeling operations.


Author(s):  
Fu-Chung F. Wang ◽  
Paul K. Wright

Abstract New techniques in Information Technology are now changing not only our daily life, but also the professional practice of product design and manufacturing for new product development. Internet technology in particular opens up another domain for building future CAD/CAM environments. This environment will be a global, network-centric environment with various members providing different software tools, manufacturing facilities, and analysis services for distributed design and fabrication. In this paper, we first briefly describe a vision and current development in a distributed design and manufacturing environment. The paper then emphasizes how current CAD tools will evolve to facilitate the distributed design and fabrication process. In particular, the development of a set of Web-based design tools for fabricating parts using a machining process via the Internet is presented. Experiments on machining 2-1/2 D and freeform parts through this Java-based design tool have shown the feasibility for a networked machining service via the Internet.


Sign in / Sign up

Export Citation Format

Share Document