Relativistic Calculations of Photoemission-and Leed-Intensities for Ordered and Disordered Alloys: Application to Cu3Pt and Cu5Pt3

Author(s):  
B. Willerding ◽  
K. Wandelt ◽  
J. Braun
Keyword(s):  
2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Pavel A. Korzhavyi ◽  
Jing Zhang

A simple modeling method to extend first-principles electronic structure calculations to finite temperatures is presented. The method is applicable to crystalline solids exhibiting complex thermal disorder and employs quasi-harmonic models to represent the vibrational and magnetic free energy contributions. The main outcome is the Helmholtz free energy, calculated as a function of volume and temperature, from which the other related thermophysical properties (such as temperature-dependent lattice and elastic constants) can be derived. Our test calculations for Fe, Ni, Ti, and W metals in the paramagnetic state at temperatures of up to 1600 K show that the predictive capability of the quasi-harmonic modeling approach is mainly limited by the electron density functional approximation used and, in the second place, by the neglect of higher-order anharmonic effects. The developed methodology is equally applicable to disordered alloys and ordered compounds and can therefore be useful in modeling realistically complex materials.


1996 ◽  
Vol 10 (20) ◽  
pp. 2469-2529 ◽  
Author(s):  
A.O. ANOKHIN ◽  
M.I. KATSNELSON

A model of alloy is considered which includes both quenched disorder in the electron subsystem (“alloy” subsystem) and electron-phonon interaction. For given approximate solution for the alloy part of the problem, which is assumed to be conserving in Baym’s sense, we construct the generating functional and derive the Eliashberg-type equations which are valid to the lowest order in the adiabatic parameter. The renormalization of bare electron–phonon interaction vertices by disorder is taken into account consistently with the approximation for the alloy self-energy. For the case of exact configurational averaging the same set of equations is established within the usual T-matrix approach. We demonstrate that for any conserving approximation for the alloy part of the self-energy the Anderson’s theorem holds in the case of isotropic singlet pairing provided disorder renormalizations of the electron-phonon interaction vertices are neglected. Taking account of the disorder renormalization of the electron-phonon interaction we analyze general equations qualitatively and present the expressions for Tc for the case of weak and intermediate electron-phonon coupling. Disorder renormalizations of the logarithmic corrections to the effective coupling, which arise when the effective interaction kernel for the Cooper channel has the second energy scale, as well as the renormalization of the dilute paramagnetic impurity suppression are discussed.


1996 ◽  
Vol 8 (42) ◽  
pp. 7883-7898 ◽  
Author(s):  
A Gonis ◽  
P E A Turchi ◽  
J Kudrnovský ◽  
V Drchal ◽  
I Turek

1973 ◽  
Vol 3 (12) ◽  
pp. 2120-2125 ◽  
Author(s):  
F Brouers ◽  
F Ducastelle ◽  
F Gautier ◽  
J Van Der Rest

Sign in / Sign up

Export Citation Format

Share Document