Conformation of Myelin Basic Protein and Its Role in Myelin Formation

Author(s):  
B. E. Chapman ◽  
L. T. Littlemore ◽  
W. J. Moore
1989 ◽  
Vol 86 (14) ◽  
pp. 5661-5665 ◽  
Author(s):  
M. Kimura ◽  
M. Sato ◽  
A. Akatsuka ◽  
S. Nozawa-Kimura ◽  
R. Takahashi ◽  
...  

1996 ◽  
Vol 2 (3) ◽  
pp. 125-132 ◽  
Author(s):  
B Stankoff ◽  
C Demerens ◽  
C Goujet-Zalc ◽  
M Monge ◽  
F Peyron ◽  
...  

Myelination in the central nervous system requires synthesis by oligodendrocytes of enormous amounts of lipids and proteins for incorporation in the developing myelin membranes. To approach the regulatory events coordinating the transcriptional activation of the genes that encode myelin proteins, we examined control of the myelin basic protein (MBP) locus. MBP plays a major role in myelin compaction. During development, MBP is already expressed in mature non-myelinating oligodendrocytes. Here we show that, in transgenic animals in which the E. coli lacZ reporter gene is under the control of increasingly large portions (256, 1900 and 3200 bp) of the MBP promoter, 5’ of the initiation of transcription site, reporter gene expression was initiated after myelin formation had started. This delayed expression of the transgene compared to MBP, strongly suggests that premyelinating expression is dependent on regulatory elements located outside of the 3200 bp sequence studied, while expression occurring at the time of myelin formation is dependent on the proximal promoter sequence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhengjian Yan ◽  
Lei Chu ◽  
Xiaojiong Jia ◽  
Lu Lin ◽  
Si Cheng

Abstract Introduction Stem cell therapy using neural progenitor cells (NPCs) shows promise in mitigating the debilitating effects of spinal cord injury (SCI). Notably, myelin stimulates axonal regeneration from mammalian NPCs. This led us to hypothesize that myelin-associated proteins may contribute to axonal regeneration from NPCs. Methods We conducted an R-based bioinformatics analysis to identify key gene(s) that may participate in myelin-associated axonal regeneration from murine NPCs, which identified the serine protease myelin basic protein (Mbp). We employed E12 murine NPCs, E14 rat NPCs, and human iPSC-derived Day 1 NPCs (D1 hNPCs) with or without CRISPR/Cas9-mediated Mbp knockout in combination with rescue L1-70 overexpression, constitutively-active VP16-PPARγ2, or the PPARγ agonist ciglitazone. A murine dorsal column crush model of SCI utilizing porous collagen-based scaffolding (PCS)-seeded murine NPCs with or without stable Mbp overexpression was used to assess locomotive recovery and axonal regeneration in vivo. Results Myelin promotes axonal outgrowth from NPCs in an Mbp-dependent manner and that Mbp’s stimulatory effects on NPC neurite outgrowth are mediated by Mbp’s production of L1-70. Furthermore, we determined that Mbp/L1-70’s stimulatory effects on NPC neurite outgrowth are mediated by PPARγ-based repression of neuron differentiation-associated gene expression and PPARγ-based Erk1/2 activation. In vivo, PCS-seeded murine NPCs stably overexpressing Mbp significantly enhanced locomotive recovery and axonal regeneration in post-SCI mice. Conclusions We discovered that Mbp supports axonal regeneration from mammalian NPCs through the novel Mbp/L1cam/Pparγ signaling pathway. This study suggests that bioengineered, NPC-based interventions can promote axonal regeneration and functional recovery post-SCI.


Sign in / Sign up

Export Citation Format

Share Document