Transcription of myelin basic protein promoted by regulatory elements in the proximal 5’ sequence requires myelinogenesis

1996 ◽  
Vol 2 (3) ◽  
pp. 125-132 ◽  
Author(s):  
B Stankoff ◽  
C Demerens ◽  
C Goujet-Zalc ◽  
M Monge ◽  
F Peyron ◽  
...  

Myelination in the central nervous system requires synthesis by oligodendrocytes of enormous amounts of lipids and proteins for incorporation in the developing myelin membranes. To approach the regulatory events coordinating the transcriptional activation of the genes that encode myelin proteins, we examined control of the myelin basic protein (MBP) locus. MBP plays a major role in myelin compaction. During development, MBP is already expressed in mature non-myelinating oligodendrocytes. Here we show that, in transgenic animals in which the E. coli lacZ reporter gene is under the control of increasingly large portions (256, 1900 and 3200 bp) of the MBP promoter, 5’ of the initiation of transcription site, reporter gene expression was initiated after myelin formation had started. This delayed expression of the transgene compared to MBP, strongly suggests that premyelinating expression is dependent on regulatory elements located outside of the 3200 bp sequence studied, while expression occurring at the time of myelin formation is dependent on the proximal promoter sequence.

2003 ◽  
Vol 284 (2) ◽  
pp. G248-G254 ◽  
Author(s):  
Song Lu ◽  
Ying Yao ◽  
Heng Wang ◽  
Songmei Meng ◽  
Xiangying Cheng ◽  
...  

Dietary lipid acutely upregulates apolipoprotein (apo) A-IV expression by sevenfold at the pretranslational level in neonatal swine jejunum. To determine the mechanism of this regulation, two-day-old female swine received intraduodenal infusions of low- and high-triacylglycerol (TG) isocaloric diets for 24 h. Nuclear runoff assay confirmed apo A-IV gene transcriptional regulation by the high-TG diet. Footprinting analysis using the swine apo A-IV proximal promoter sequence (+14 to −246 bp) demonstrated three regions protected by the low-TG extracts. Of these three motifs, only ACCTTC showed 100% homology to the human sequence and was further studied. EMSA was performed using probes containing wild-type (WT) and mutant (M) motifs. A shift was noted with the low-TG nuclear extracts with the WT probe but not with the M probe. Excess unlabeled free WT probe competed out the shift, whereas the M probe did not. No significant shift occurred with either probe using high-TG extracts. These results suggest that a repressor protein binds to the ACCTTC motif and becomes unbound during lipid absorption, allowing transcriptional activation of the apo A-IV gene in newborn swine small intestine.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lin Zhang ◽  
Zhiqiang Song ◽  
Fangfang Li ◽  
Xixi Li ◽  
Haikun Ji ◽  
...  

Abstract Background Drought stress is one of the major abiotic stresses that affects plant growth and productivity. The GAPCp genes play important roles in drought stress tolerance in multiple species. The aim of this experiment was to identify the core cis-regulatory elements that may respond to drought stress in the GAPCp2 and GAPCp3 promoter sequences. Results In this study, the promoters of GAPCp2 and GAPCp3 were cloned. The promoter activities were significantly improved under abiotic stress via regulation of Rluc reporter gene expression, while promoter sequence analysis indicated that these fragments were not almost identical. In transgenic Arabidopsis with the expression of the GUS reporter gene under the control of one of these promoters, the activities of GUS were strong in almost all tissues except the seeds, and the activities were induced after abiotic stress. The yeast one-hybrid system and EMSA demonstrated that TaMYB bound TaGAPCp2P/3P. By analyzing different 5′ deletion mutants of these promoters, it was determined that TaGAPCp2P (− 1312~ − 528) and TaGAPCp3P (− 2049~ − 610), including the MYB binding site, contained enhancer elements that increased gene expression levels under drought stress. We used an effector and a reporter to co-transform tobacco and found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (− 1197~ − 635) and TaGAPCp3P (− 1456~ − 1144 and − 718~ − 610) in plant cells. Then, the Y1H system and EMSA assay demonstrated that these MYB binding sites in TaGAPCp2P (− 1135 and − 985) and TaGAPCp3P (− 1414 and − 665) were the target cis-elements of TaMYB. The deletion of the specific MYB binding sites in the promoter fragments significantly restrained the drought response, and these results confirmed that these MYB binding sites (AACTAAA/C) play vital roles in improving the transcription levels under drought stress. The results of qRT-PCR in wheat protoplasts transiently overexpressing TaMYB indicated that the expression of TaGAPCp2/3 induced by abiotic stress was upregulated by TaMYB. Conclusion The MYB binding sites (AACTAAA/C) in TaGAPCp2P/3P were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaMYB.


1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


1982 ◽  
Vol 28 (4) ◽  
pp. 813-818 ◽  
Author(s):  
D E Comings ◽  
A Pekkula-Flagan

Abstract To examine the basic human brain proteins, we subjected 9 mmol/L urea extracts to non-equilibrium gel electrophoresis. The pattern observed differs distinctly from that with equilibrium gel electrophoresis. With this technique, the myelin proteins (myelin basic protein, proteolipids, and basic Wolfgram proteins) and many other unindentified major basic proteins can be demonstrated. The myelin basic proteins occur as two major polypeptides of different charge and slightly different molecular mass, indicating the action of at least two genes. The proteolipid proteins occur as a long series of charge isomers, suggesting multiple genes or extensive post-transcriptional modification. In one patient with schizophrenia, a charge-change mutation of the larger myelin basic protein (MBL) was observed and is termed "MBL-Duarte."


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 195-202
Author(s):  
Masanori Nakamigawa ◽  
Takumi Kondo ◽  
Mitsugu Maéno

SummaryWe isolated and characterized Xenopus tropicalis hb4 flanking DNA and showed that the −3076/+29 sequence was able to drive stage-specific transcription in the developmental process. Transgenic reporter analysis indicated that green fluorescent protein was expressed in the ovaries of female frogs at 3 months of age and in both the ovaries and testis of frogs at 6 months of age. A series of experiments with deletion of the flanking sequence and a subsequent luciferase reporter assay revealed that there were two positive regulatory regions and that the most proximal sequence of the promoter region had a certain level of transcriptional activity in oocytes. Subsequently, we showed that a conserved sequence containing Nobox-binding element (NBE) was essential for transcriptional activation and that Nobox expressed in the ovary had a crucial role in hb4 transcription through the NBE sequence.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1470-1470
Author(s):  
Alexander K Ebralidze ◽  
Annalisa Di Ruscio ◽  
Sanghoon Lee ◽  
Karen O'Brien ◽  
Daniel G. Tenen

Abstract Abstract 1470 Poster Board I-493 The transcription factor C/EBPa plays a pivotal role in hematopoietic stem cell (HSC) commitment and differentiation. Expression of the C/EBPa gene is tightly regulated during normal hematopoietic development, and dysregulation of C/EBPa expression can lead to lung cancer and leukemia. However, little is known about how the C/EBPa gene is regulated in vivo. In this study, we demonstrate synergetic regulation of C/EBPa by two distant cis-elemets located 5' and 3' to the gene and their effect on chromatin architecture. Previous studies have indicated that as much as 4.8 kb of 5' upstream C/EBPa regulatory sequences were unable to express significant levels of reporter gene activity in transgenic mice. Therefore, we initiated a search for important distal elements in the C/EBPa locus. We have applied a combination of 1) comparative analysis of human and mouse genomic sequences; 2) DNase I hypersensitive studies; 3) chromosome conformation capture (3C); 4) analysis of reporter constructs in stable cells lines; and 5) generation and analysis of transgenic mouse lines. This let us to identify the regulatory role of two distal conserved homology elements located at ∼38 kb 5' of the transcription start site (TSS) of murine C/EBPa (corresponding to ∼45 kb 5' of the TSS of human C/EBPa) and at ∼33 kb 3' to TSS of both murine and human C/EBPa. We show that the constructs lacking both distal elements were unable to express C/EBPa mRNA, while addition of each region resulted in detectable (by Northern blot analysis) expression in transgenic animals. We have observed a cooperative effect of these two regions on C/EBPa expression, a construct carrying both elements expresses ∼2.5-fold level over constructs carrying either one element alone. We have investigated the mechanism for the increased expression by these distal elements by using deletion constructs. Our results suggest that lack of these elements results in aberrant gene expression due to proximal promoter DNA hypermethylation and point to a novel mechanism in establishment of critical epigenetic marks. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 863-863
Author(s):  
Hongfang Wang ◽  
Yumi Yashiro-Ohtani ◽  
Chongzhi Zang ◽  
Yinling Joey Wong ◽  
Will Bailis ◽  
...  

Abstract Gain-of-function NOTCH1 mutations are oncogenic drivers in a high fraction of T-cell lymphoblastic leukemia/lymphoma (T-LL). These mutations variously cause increased production or stabilization of the free intracellular domain of NOTCH1, which regulates gene expression by forming a transcription complex with the DNA-binding factor RBPJ and coactivators of the MAML family. Using expression profiling and ChIP-seq, we have shown that NOTCH1/RBPJ complexes activate most target genes by binding to super-enhancers, large regulatory elements that switch on transcription through long-range interactions with gene promoters. MYC is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates MYC is unknown. To understand which regulatory element(s) regulate MYC expression, we used chromatin conformation capture (3C) assays to test the interaction between putative enhancer(s) and the MYC promoter in T-LL cell lines, and reporter gene assays to confirm enhancer function of candidate sites. We identified a distal site located >1 Mb 3’ of human and murine MYC termed the Notch-dependent MYC enhancer (NDME) that binds Notch transcription complexes and physically interacts with the MYC proximal promoter. An ~1 kb DNA fragment containing this site activates a luciferase reporter gene in a Notch-dependent fashion in T-LL cells but not in heterologous cell types. The Notch binding site lies within a large enhancer region (>600 kb in breadth) containing multiple discrete H3K27ac peaks. Remarkably, acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer region and the MYC promoter that correlate with NOTCH1/RBPJ complex binding and MYC expression. T-LL cells selected for resistance to gamma-secretase inhibitors (GSIs) exhibit epigenetic silencing of the NDME and loss of NDME looping interactions with the MYC promoter, yet maintain MYC expression. 3C analysis of GSI resistant cells shows preferential interaction between the MYC promoter and a more 3’ enhancer element recently described as a BRD4-dependent regulator of MYC expression in acute myeloid leukemia cells. In line with this observation, BRD4 antagonists are potent inhibitors of MYC expression in GSI resistant T-LL cells but not GSI-sensitive cells. We also studied a case of Notch-mutated early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL). ChIP-Seq analysis of the leukemic blasts revealed an “AML-like” MYC enhancer chromatin state, and as predicted from our analysis of cell lines, the blasts rapidly down-regulated MYC in response to BRD4 inhibitor but not in response to GSI. These findings suggest that specific MYC chromatin states predict responsiveness to Notch and BRD4 inhibitors, and provide a rationale for use of Notch and BRD4 inhibitor combinations in Notch-mutated leukemias. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document