Non-covalent cross-linking of lipid bilayers by myelin basic protein. A possible role in myelin formation

1977 ◽  
Vol 470 (2) ◽  
pp. 170-184 ◽  
Author(s):  
Ross Smith
1978 ◽  
Vol 169 (3) ◽  
pp. 567-575 ◽  
Author(s):  
Wendy Cammer ◽  
Lesley Z. Bieler ◽  
William T. Norton

Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329–336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P2 protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H2O2. Horseradish peroxidase plus H2O2 caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H2O2 and myoglobin plus H2O2 were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H2O2 were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H2O2, incubations with catalytic concentrations of peroxidase in the presence of H2O2 converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions.


2009 ◽  
Vol 106 (9) ◽  
pp. 3154-3159 ◽  
Author(s):  
Y. Min ◽  
K. Kristiansen ◽  
J. M. Boggs ◽  
C. Husted ◽  
J. A. Zasadzinski ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
John E. Mindur ◽  
Sudhir K. Yadav ◽  
Naoko Ito ◽  
Mitsutoshi Senoh ◽  
Haru Kato ◽  
...  

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Recent studies suggest that migration of Th1 and Th17 cells specific for enteric bacteria from the gut to the CNS may lead to the initiation and/or exacerbation of autoimmune diseases including MS. Human leukocyte antigen (HLA)-DR15 is an MHC class II (MHCII) haplotype highly associated with the development of MS that contains the two HLA-DRB* genes, DRB1*1501 (DR2b) and DRB5*0101 (DR2a). To identify enteric bacteria which harbor antigenic epitopes that activate myelin-specific T cells and drive CNS inflammation, we screened for enteric bacteria which express cross-reactive epitopes (‘mimotopes’) of an immunodominant myelin basic protein 89–98 (MBP89-98) epitope. Based on known MHCII HLA-DR2a amino acid binding motifs and cultivation with splenic T cells isolated from MBP-T cell receptor (TCR)/DR2a transgenic (Tg) mice, we discovered that a certain variant of surface layer protein A (SLPA), which is expressed by a subtype of Clostridioides difficile, contains an amino acid sequence that activates MBP89-98-reactive T cells. Furthermore, activation of MBP-specific T cells by SLPA upon active immunization induced experimental autoimmune encephalomyelitis (EAE) in MBP-TCR/DR2a Tg mice. This study suggests that a unique strain of C. difficile possesses an encephalitogenic mimotope of MBP that activates autoreactive, myelin-specific T cells.


Sign in / Sign up

Export Citation Format

Share Document