The Metabolic Basis of Ethanol Toxicity

Author(s):  
J. Tremolieres ◽  
R. Lowy ◽  
G. Griffaton
2017 ◽  
Vol 242 (10) ◽  
pp. 1025-1033 ◽  
Author(s):  
Weilong Chang ◽  
Jie Bai ◽  
Shaobo Tian ◽  
Muyuan Ma ◽  
Wei Li ◽  
...  

Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in gastric mucosal epithelial cells. This study brings new and important insights into the mechanism of alcoholic gastric mucosal injury and may provide an avenue for future therapeutic strategies.


1995 ◽  
Vol 306 (3) ◽  
pp. 717-721 ◽  
Author(s):  
G Wu ◽  
N E Flynn ◽  
W Yan ◽  
D G Barstow

This study was designed to determine whether pyrroline-5-carboxylate (P-5-C) synthase is deficient in chick enterocytes therefore resulting in the lack of synthesis of ornithine and citrulline from glutamine. Post-weaning pig enterocytes, which are known to contain P-5-C synthase and to synthesize both ornithine and citrulline from glutamine, were used as positive controls. Enterocytes were incubated at 37 degrees C for 0-30 min in the presence of 2 mM [U-14C]glutamine or 2 mM ornithine plus 2 mM NH4Cl. In chick enterocytes, glutamine was metabolized to NH3, CO2, glutamate, alanine and aspartate, but not to ornithine, citrulline, arginine or proline. Likewise, there was no formation of citrulline, arginine, alanine or aspartate from ornithine in chick enterocytes. Furthermore, the rate of conversion of ornithine into proline in chick enterocytes was only about 4% of that in cells from pigs. To elucidate the reason for the inability of chick enterocytes to synthesize ornithine and citrulline from glutamine, the activities of the enzymes involved were measured. No activity of P-5-C synthase or ornithine carbamoyltransferase was found in chick enterocytes, in contrast with cells from post-weaning pigs. It was also demonstrated that the activity of ornithine aminotransferase in chick enterocytes was only 3% of that in cells from pigs. Thus the present findings elucidate the biochemical reason for the lack of endogenous synthesis of ornithine and citrulline in chicks. Our results also explain previous observations that ornithine cannot replace arginine or proline in the diet of chicks. We suggest that the absence of P-5-C synthase and ornithine carbamoyltransferase in enterocytes is the metabolic basis for the nutritional requirement of arginine in the chick.


Alcoholism ◽  
1991 ◽  
pp. 45-56 ◽  
Author(s):  
Emanuelle Albano ◽  
Magnus Ingelman-Sundberg ◽  
A. Tomasi ◽  
G. Poli

Sign in / Sign up

Export Citation Format

Share Document