Preparation of Block Copolymers from Styrene-Acrylonitrile Macroradicals

1980 ◽  
pp. 105-118
Author(s):  
Raymond B. Seymour ◽  
David P. Garner ◽  
G. Allan Stahl ◽  
Roger D. Knapp ◽  
Laura Sanders
1996 ◽  
Vol 29 (8) ◽  
pp. 3050-3052 ◽  
Author(s):  
Takeshi Fukuda ◽  
Tomoya Terauchi ◽  
Atsushi Goto ◽  
Yoshinobu Tsujii ◽  
Takeaki Miyamoto ◽  
...  

Author(s):  
Gudrun A. Hutchins

In order to optimize the toughening effect of elastomers in engineering polymers, it is necessary to characterize the size, morphology and dispersion of the specific elastomer within the polymer matrix. For unsaturated elastomers such as butadiene or isoprene, staining with osmium tetroxide is a well established procedure. The residual carbon-carbon double bond in these materials is the reactive site and forms a 1,2-dilato complex with the OsO4. Incorporation of osmium tetroxide into the elastomer not only produces sufficient contrast for TEM, but also crosslinks the elastomer sufficiently so that ultramicrotomy can be accomplished at room temperature with minimal distortion.Blends containing saturated elastomers such as butyl acrylate (BA) and ethylene propylene diene monomer (EPDM) cannot be stained directly with OsO4 because effective reaction sites such as C=C or -NH2 are not available in sufficient number. If additional reaction sites can be introduced selectively into the elastomer by a chemical reaction or the absorption of a solvent, a modified, two-step osmium staining procedure is possible.


2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


Author(s):  
Mark J. Newman ◽  
Jeffrey K. Actor ◽  
Mannersamy Balusubramanian ◽  
Chinnaswamy Jagannath
Keyword(s):  

2019 ◽  
Author(s):  
Jacob Ishibashi ◽  
Yan Fang ◽  
Julia Kalow

<p>Block copolymers are used to construct covalent adaptable networks that employ associative exchange chemistry (vitrimers). The resulting vitrimers display markedly different nanostructural, thermal and rheological properties relative to those of their statistical copolymer-derived counterparts. This study demonstrates that prepolymer sequence is a versatile strategy to modify the properties of vitrimers.</p>


2018 ◽  
Author(s):  
Mustapha Abdu-Aguye ◽  
Nutifafa Doumon ◽  
Ivan Terzic ◽  
Vincent Voet ◽  
Katya Loos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document