reactive site
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 19)

H-INDEX

41
(FIVE YEARS 2)

2022 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Asmaa J.i AL-Lame ◽  
Wafaa F. Rodhan ◽  
Nafeesa J. Kadhim ◽  
Shahed K. Taher

The standard heat of formation (ΔHof) and binding energy (ΔEb) for the free compound and their derivatives are calculated by using the PM3 method at 273K of Hyperchem.-8.07 program. The compound is more stable than their derivatives. furthermore to investigate the reactive site of the molecules the electrostatic potential of free derivatives is measured and pm3 is used to evaluate the vibrational spectra of the free derivatives, the frequencies are obtained approximately agreed with those values experimentally found; in addition, the calculation helps to assign clearly the most diagnostic bands .


2021 ◽  
pp. 004051752110678
Author(s):  
Ting Liang ◽  
Kelu Yan ◽  
Tao Zhao ◽  
Bolin Ji

A novel multiple-reactive-site crosslinking agent, P(TAA‒AA), was developed from transaconitic acid and acrylic acid in this study. Cotton fabrics with durable wrinkle-resistant properties were obtained by crosslinking with P(TAA‒AA), which benefited from the multifunctional carboxyl groups of crosslinking agents and the three-dimensional crosslinking inside cotton fibers. The wrinkle-resistant properties of P(TAA‒AA)-modified fabrics were evaluated and compared with those of other polycarboxylic acid-treated fabrics, and the P(TAA‒AA)-modified fabrics showed a wrinkle recovery angle of 262° as high as the 1,2,3,4-butanetetracarboxylic acid-modified fabrics while maintaining nearly two-fold higher tearing strength retention (62.9%), and they showed a much higher value of whiteness index than the citric acid-modified fabrics. This demonstrated that the obtained P(TAA‒AA) is an ideal polycarboxylic acid already known to date simultaneously to realize the high wrinkle recovery angle and high tearing strength retention for treated cotton fabrics. The Raman depth mapping images and the scanning electron microscope images of P(TAA‒AA)-modified samples indicated that P(TAA‒AA) molecules can diffuse into the amorphous regions of the cellulose fibers and form crosslinking bridges between cellulose chains. The multiple reactive carboxyl groups in P(TAA‒AA) may form three or more ester bonds between the P(TAA‒AA) molecule and different cellulose chains, which were regarded as the main contribution to the high crosslinking effectiveness of the P(TAA‒AA)-modified fabrics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Donghui Zhang ◽  
Jingjing Liu ◽  
Qi Chen ◽  
Weinan Jiang ◽  
Yibing Wang ◽  
...  

AbstractHydrogels have been extensively used in many fields. Current synthesis of functional hydrogels requires incorporation of functional molecules either before or during gelation via the pre-organized reactive site along the polymer chains within hydrogels, which is tedious for polymer synthesis and not flexible for different types of hydrogels. Inspired by sandcastle worm, we develop a simple one-step strategy to functionalize wet hydrogels using molecules bearing an adhesive dibutylamine-DOPA-lysine-DOPA tripeptide. This tripeptide can be easily modified with various functional groups to initiate diverse types of polymerizations and provide functional polymers with a terminal adhesive tripeptide. Such functional molecules enable direct modification of wet hydrogels to acquire biological functions such as antimicrobial, cell adhesion and wound repair. The strategy has a tunable functionalization degree and a stable attachment of functional molecules, which provides a tool for direct and convenient modification of wet hydrogels to provide them with diverse functions and applications.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6028
Author(s):  
Zizhuang Liu ◽  
Hechen Wu ◽  
Wei Li ◽  
Xiaonan Wu

The activation reactions of methane mediated by metal carbide ions MC3+ (M = Ir and Pt) were comparatively studied at room temperature using the techniques of mass spectrometry in conjunction with theoretical calculations. MC3+ (M = Ir and Pt) ions reacted with CH4 at room temperature forming MC2H2+/C2H2 and MC4H2+/H2 as the major products for both systems. Besides that, PtC3+ could abstract a hydrogen atom from CH4 to generate PtC3H+/CH3, while IrC3+ could not. Quantum chemical calculations showed that the MC3+ (M = Ir and Pt) ions have a linear M-C-C-C structure. The first C–H activation took place on the Ir atom for IrC3+. The terminal carbon atom was the reactive site for the first C–H bond activation of PtC3+, which was beneficial to generate PtC3H+/CH3. The orbitals of the different metal influence the selection of the reactive sites for methane activation, which results in the different reaction channels. This study investigates the molecular-level mechanisms of the reactive sites of methane activation.


2021 ◽  
Author(s):  
Yu-Hua Wen ◽  
Zi-Jing Zhang ◽  
Shuai Li ◽  
Jin Song ◽  
Liu-Zhu Gong

Abstract Despite that asymmetric stereodivergent synthesis has experienced great success to provide unusual processes for the creation of chirality complexity, concepts appliable to asymmetric stereodivergent catalysis are still limited. The dependence on the unusual capacity of each catalyst to precisely control the reactive site planar in the region poses unparalleled constraint on this field. Here, we first demonstrate that the chiral Cu-allenylidene species can participate in the stereodivergent propargylic alkylation of enals, in concert with chiral N-heterocyclic carbenes (NHCs). Thus, all four stereoisomers were obtained with excellent enantioselectivity and diastereoselectivity (up to >99% e.e. and >95:5 d.r.) from the same starting materials by simply altering chiral Cu-Pybox complex and NHC combinations. The rich chemistry workable in the products enables the structurally diverse synthesis of chiral functional molecules and holds great potential in alkaloid synthesis, as showcased by the preparation of the key building block to access (-)-perophpramidine.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3521
Author(s):  
Lucia De Rosa ◽  
Rossella Di Stasi ◽  
Alessandra Romanelli ◽  
Luca Domenico D’Andrea

Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 602
Author(s):  
Sonia Yoo Im ◽  
Camila Ramalho Bonturi ◽  
Adriana Miti Nakahata ◽  
Clóvis Ryuichi Nakaie ◽  
Arnildo Pott ◽  
...  

Metastasis, the primary cause of death from malignant tumors, is facilitated by multiple protease-mediated processes. Thus, effort has been invested in the development of protease inhibitors to prevent metastasis. Here, we investigated the effects of protease inhibitors including the recombinant inhibitors rBbKI (serine protease inhibitor) and rBbCI (serine and cysteine inhibitor) derived from native inhibitors identified in Bauhinia bauhinioides seeds, and EcTI (serine and metalloprotease inhibitor) isolated from the seeds of Enterolobium contortisiliquum on the mouse fibrosarcoma model (lineage L929). rBbKI inhibited 80% of cell viability of L929 cells after 48 h, while EcTI showed similar efficacy after 72 h. Both inhibitors acted in a dose and time-dependent manner. Conversely, rBbCI did not significantly affect the viability of L929 cells. Confocal microscopy revealed the binding of rBbKI and EcTI to the L929 cell surface. rBbKI inhibited approximately 63% of L929 adhesion to fibronectin, in contrast with EcTI and rBbCI, which did not significantly interfere with adhesion. None of the inhibitors interfered with the L929 cell cycle phases. The synthetic peptide RPGLPVRFESPL-NH2, based on the BbKI reactive site, inhibited 45% of the cellular viability of L929, becoming a promising protease inhibitor due to its ease of synthesis.


2021 ◽  
Author(s):  
Narumi Aoki-Shioi ◽  
Shigeyuki Terada ◽  
Roland Hellinger ◽  
Yoshitaka Furuta ◽  
Christian W Gruber

Bowman–Birk inhibitors (BBI) are plant-derived serine proteinase inhibitors. Endogenously, they function as defense molecules against pathogens and insects, but they also have been explored for applications in cancer treatment and inflammatory disorders. Here, we isolated 15 novel BBIs from the bulb of Hyacinthus orientalis (termed HOSPIs). These isoinhibitors consisted of two or three chains, respectively, that are linked by disulfides bonds based on proposed cleavage sites in the canonical BBI reactive site loop. They strongly inhibited trypsin (Ki = 0.22 - 167 nM) and α-chymotrypsin (Ki = 19 - 1200 nM). Notably, HOSPI-B4 contains a six-residue reactive loop, which appears to be the smallest such motif discovered in BBIs to date. HOSPI-A6 and -A7 contain an unusual reactive site, i.e. Leu-Met at the P1-P1' position and have strong inhibitory activity against trypsin, α-chymotrypsin and elastase. Analysis of the cDNA encoding HOSPIs revealed that the precursors have HOSPI-like domains repeated at least twice with a defined linker sequence connecting individual domains. Lastly, mutational analysis of HOSPIs suggested that the linker sequence does not affect the inhibitory activity, and a Thr residue at the P2 site and a Pro at the P3' site are crucial for elastase inhibition. Using mammalian proteases as representative model system, we gain novel insight into the sequence diversity and proteolytic activity of plant BBI. These results may aid the rational design of BBI peptides with potent and distinct inhibitory activity against human, pathogen, or insect serine proteinases.


2020 ◽  
Vol 392 ◽  
pp. 119-125
Author(s):  
Yu Horiuchi ◽  
Kenta Tatewaki ◽  
Shinya Mine ◽  
Tae-Ho Kim ◽  
Soo Wohn Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document