The Olfactory Organ

1984 ◽  
pp. 167-186 ◽  
Author(s):  
G. A. Monti Graziadei ◽  
P. P. C. Graziadei
Keyword(s):  
2017 ◽  
Vol 303 (1) ◽  
pp. 72-81 ◽  
Author(s):  
C. Nowack ◽  
P. S. Peram ◽  
S. Wenzel ◽  
A. Rakotoarison ◽  
F. Glaw ◽  
...  

1882 ◽  
Vol 33 (216-219) ◽  
pp. 15-21

I have endeavoured in this abstract to summarise the results of my recent researches into the minute structure of the brain in the smaller Rodents. The pig and sheep, which were the subjects of my former memoir, possess a highly developed olfactory apparatus conjoined to a well convoluted cortical surface; but in the smaller animals now under consideration the surface of the hemispheres is almost perfectly smooth, while the olfactory organ, from its comparative size and complex relationship, has an important part to play in the architecture of the brain. Animals possessing the latter type of cerebrum have been classed together as the Osmatic Lissencéphales, in contradistinction to those which were the subject of my former enquiries, the Osmatic Gyren-céphales. My researches into the structure of the brain of prominent members of the former group, viz., the rabbit and rat, may be considered under two heads:— ( a .) The histology of the complete cortical envelope.


2021 ◽  
Vol 1879 (2) ◽  
pp. 022028
Author(s):  
Hussain A. M. Dauod ◽  
Ahmad A. Hussain ◽  
May F. Al-Habib

1963 ◽  
Vol 40 (1) ◽  
pp. 187-193
Author(s):  
M. J. WELLS

1. A method of teaching Octopus chemotactile discriminations is described. 2. The animals can be shown to be capable of distinguishing by touch between porous objects soaked in plain sea water and sea water with hydrochloric acid, sucrose or quinine sulphate added. 3. They can detect these substances in concentrations at least 100 times as dilute as the human tongue is capable of detecting them in distilled water. 4. They can be trained to distinguish between equimolar (0.2 mM) solutions of hydrochloric acid, sucrose and quinine. 5. They can also be trained to distinguish between sea water and fresh water or half-strength sea water or sea water with twice the usual quantity of salt. 6. The function of the ‘olfactory organ’ is discussed. 7. Chemotactile learning is discussed in relation to the means by which Octopus finds its way about the territory around its ‘home’


2015 ◽  
Vol 49 (6) ◽  
pp. 559-566 ◽  
Author(s):  
M. F. Kovtun ◽  
Ya. V. Stepanyuk

Abstract The Development of Olfactory Organ of Lissotriton vulgaris (Amphibia, Caudata). Kovtun, M. F, Stepanyuk, Ya. V. - Using common histological methods, the morphogenesis of olfactory analyzer peripheral part of Lissotriton vulgaris (Amphibia, Caudata) was studied, during the developmental period starting with olfactory pit laying and finishing with definitive olfactory organ formation. Special attention is paid to vomeronasal organ and vomeronasal gland development. Reasoning from obtained data, we consider that vomeronasal organ emerged as the result of olfactory epithelium and nasal cavity differentiation.


Sign in / Sign up

Export Citation Format

Share Document