Acoustical Imaging Techniques—Theoretical and Experimental Results

Author(s):  
B. Ho ◽  
L. T. Wu ◽  
R. Zapp
2011 ◽  
Vol 08 (04) ◽  
pp. 825-836
Author(s):  
W. LI

Underwater acoustical imaging techniques and the inverse analysis of acoustic scattering problems have now found many important engineering applications. Based on the physical optics approximation, the ramp response signal can be proven that it is proportional to the profile function of the scatterer, which is defined as the area of cross section of the object perpendicular to the direction of wave propagation. The image synthesis technique named as the approximate limiting surface technique is applied to generated underwater objects by using the ramp responses of the objects. The modification should be made by an iterative procedure which will adjust the parameters of each surface and will yield a result until the profile functions of this generated image at all looking angles are consistent with the input ones. Several typical objects are presented to demonstrate the process of the 3D image generation and the results indicate that the qualities of the final images are quite acceptable. The further research work is to build an automatic iterative mechanism to generate the final image for a submerged object.


1993 ◽  
pp. 79-85
Author(s):  
Mohamed A. Benkhelifa ◽  
Marcel Gindre ◽  
Jean-Yves Le Huérou ◽  
Wladimir Urbach

1984 ◽  
pp. 329-343 ◽  
Author(s):  
G. H. Harrison ◽  
E. Balcer-Kubiczek ◽  
D. McCulloch

1989 ◽  
Vol 27 (2) ◽  
pp. 119-128 ◽  
Author(s):  
V.R. Singh

1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Sign in / Sign up

Export Citation Format

Share Document