Artificial Insemination by Donor: Discrete time survival data with crossed and nested random effects

Author(s):  
David Clayton ◽  
René Ecochard
Methodology ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 41-60
Author(s):  
Shahab Jolani ◽  
Maryam Safarkhani

Abstract. In randomized controlled trials (RCTs), a common strategy to increase power to detect a treatment effect is adjustment for baseline covariates. However, adjustment with partly missing covariates, where complete cases are only used, is inefficient. We consider different alternatives in trials with discrete-time survival data, where subjects are measured in discrete-time intervals while they may experience an event at any point in time. The results of a Monte Carlo simulation study, as well as a case study of randomized trials in smokers with attention deficit hyperactivity disorder (ADHD), indicated that single and multiple imputation methods outperform the other methods and increase precision in estimating the treatment effect. Missing indicator method, which uses a dummy variable in the statistical model to indicate whether the value for that variable is missing and sets the same value to all missing values, is comparable to imputation methods. Nevertheless, the power level to detect the treatment effect based on missing indicator method is marginally lower than the imputation methods, particularly when the missingness depends on the outcome. In conclusion, it appears that imputation of partly missing (baseline) covariates should be preferred in the analysis of discrete-time survival data.


Author(s):  
Hoora Moradian ◽  
Weichi Yao ◽  
Denis Larocque ◽  
Jeffrey S. Simonoff ◽  
Halina Frydman

Author(s):  
Michael J. Crowther

In this article, I present the community-contributed stmixed command for fitting multilevel survival models. It serves as both an alternative to Stata’s official mestreg command and a complimentary command with substantial extensions. stmixed can fit multilevel survival models with any number of levels and random effects at each level, including flexible spline-based approaches (such as Royston–Parmar and the log-hazard equivalent) and user-defined hazard models. Simple or complex time-dependent effects can be included, as can expected mortality for a relative survival model. Left-truncation (delayed entry) is supported, and t-distributed random effects are provided as an alternative to Gaussian random effects. I illustrate the methods with a commonly used dataset of patients with kidney disease suffering recurrent infections and a simulated example illustrating a simple approach to simulating clustered survival data using survsim (Crowther and Lambert 2012, Stata Journal 12: 674–687; 2013, Statistics in Medicine 32: 4118–4134). stmixed is part of the merlin family (Crowther 2017, arXiv Working Paper No. arXiv:1710.02223; 2018, arXiv Working Paper No. arXiv:1806.01615).


2015 ◽  
Vol 22 (1) ◽  
pp. 38-62 ◽  
Author(s):  
Hee-Koung Joeng ◽  
Ming-Hui Chen ◽  
Sangwook Kang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document